Model Space Localization Is Not Always Better Than Observation Space Localization for Assimilation of Satellite Radiances

Lili Lei Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Lili Lei in
Current site
Google Scholar
PubMed
Close
and
Jeffrey S. Whitaker NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Jeffrey S. Whitaker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Covariance localization is an essential component of ensemble-based data assimilation systems for large geophysical applications with limited ensemble sizes. For integral observations like the satellite radiances, where the concepts of location or vertical distance are not well defined, vertical localization in observation space is not as straightforward as in model space. The detailed differences between model space and observation space localizations are examined using a real radiance observation. Counterintuitive analysis increments can be obtained with model space localization; the magnitude of the increment can increase and the increment can change sign when the localization scale decreases. This occurs when there are negative background-error covariances and a predominately positive forward operator. Too narrow model space localization can neglect the negative background-error covariances and result in the counterintuitive analysis increments. An idealized 1D model with integral observations and known true error covariance is then used to compare errors resulting from model space and observation space localizations. Although previous studies have suggested that observation space localization is inferior to model space localization for satellite radiances, the results from the 1D model reveal that observation space localization can have advantages over model space localization when there are negative background-error covariances. Differences between model space and observation space localizations disappear as ensemble size, observation error variance, and localization scale increase. Thus, large ensemble sizes and vertical localization length scales may be needed to more effectively assimilate radiance observations.

Corresponding author address: Lili Lei, NOAA/Earth System Research Laboratory/Physical Sciences Division, 325 Broadway R/PSD1, Boulder, CO 80305. E-mail: lili.lei@noaa.gov

Abstract

Covariance localization is an essential component of ensemble-based data assimilation systems for large geophysical applications with limited ensemble sizes. For integral observations like the satellite radiances, where the concepts of location or vertical distance are not well defined, vertical localization in observation space is not as straightforward as in model space. The detailed differences between model space and observation space localizations are examined using a real radiance observation. Counterintuitive analysis increments can be obtained with model space localization; the magnitude of the increment can increase and the increment can change sign when the localization scale decreases. This occurs when there are negative background-error covariances and a predominately positive forward operator. Too narrow model space localization can neglect the negative background-error covariances and result in the counterintuitive analysis increments. An idealized 1D model with integral observations and known true error covariance is then used to compare errors resulting from model space and observation space localizations. Although previous studies have suggested that observation space localization is inferior to model space localization for satellite radiances, the results from the 1D model reveal that observation space localization can have advantages over model space localization when there are negative background-error covariances. Differences between model space and observation space localizations disappear as ensemble size, observation error variance, and localization scale increase. Thus, large ensemble sizes and vertical localization length scales may be needed to more effectively assimilate radiance observations.

Corresponding author address: Lili Lei, NOAA/Earth System Research Laboratory/Physical Sciences Division, 325 Broadway R/PSD1, Boulder, CO 80305. E-mail: lili.lei@noaa.gov
Save
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, doi:10.1175/MWR-D-11-00013.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and L. Lei, 2013: Empirical localization of observation impact in ensemble Kalman filters. Mon. Wea. Rev., 141, 41404153, doi:10.1175/MWR-D-12-00330.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61A, 8496, doi:10.1111/j.1600-0870.2008.00371.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111, doi:10.1111/j.1600-0870.2008.00372.x.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282290, doi:10.1175/2009MWR3017.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and D. S. Oliver, 2010: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci., 14, 579601, doi:10.1007/s10596-009-9174-6.

    • Search Google Scholar
    • Export Citation
  • Collard, A. D., and A. P. McNally, 2009: The assimilation of infrared atmospheric sounding interferometer radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 10441058, doi:10.1002/qj.410.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, doi:10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emerick, A., and A. Reynolds, 2011: Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput. Geosci., 15, 251269, doi:10.1007/s10596-010-9198-y.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Fertig, E. J., B. R. Hunt, E. Ott, and I. Szunyogh, 2007: Assimilating non-local observations with a local ensemble Kalman filter. Tellus, 59A, 719730, doi:10.1111/j.1600-0870.2007.00260.x.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background-error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, Y., F. Weng, Q. Liu, and P. van Delst, 2007: A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res., 112, D11121, doi:10.1029/2006JD008208.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, doi:10.1256/qj.05.135.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with the ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, doi:10.1175/MWR-2864.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Kang, J.-S., E. Kalnay, J. Liu, I. Fung, T. Miyoshi, and K. Ide, 2011: “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation. J. Geophys. Res., 116, D09110, doi:10.1029/2010JD014673.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., and Coauthors, 2006: Improving global analysis and forecasting with AIRS. Bull. Amer. Meteor. Soc., 87, 891894, doi:10.1175/BAMS-87-7-891.

    • Search Google Scholar
    • Export Citation
  • McCarty, W., G. Jedloveck, and T. L. Miller, 2009: Impact of the assimilation of Atmospheric Infrared Sounder radiance measurements on short-term weather forecasts. J. Geophys. Res., 114, D18122, doi:10.1029/2008JD011626.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thepaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935957, doi:10.1256/qj.04.171.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and Y. Sato, 2007: Assimilating satellite radiances with local ensemble transform Kalman filter (LETKF) applied to the JMA global model (GSM). SOLA, 3, 3740, doi:10.2151/sola.2007-010.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., S. Yamane, and T. Enomoto, 2007: Localizing the error covariance by physical distance within a local ensemble transform Kalman filter (LETKF). Sci. Online Lett. Atmos., 3, 8992.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, doi:10.1111/j.1600-0870.2004.00076.x.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, doi:10.1175/2008MWR2444.1.

    • Search Google Scholar
    • Export Citation
  • Weng, F., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 37993807, doi:10.1175/2007JAS2112.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 11901200, doi:10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhen, Y., and F. Zhang, 2014: A probabilistic approach to adaptive covariance localization for serial ensemble square root filters. Mon. Wea. Rev., 142, 4499–4518, doi:10.1175/MWR-D-13-00390.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., D. McLaughlin, D. Entekhabi, and G. C. Ng, 2008: An ensemble multiscale filter for large nonlinear data assimilation problems. Mon. Wea. Rev., 136, 678698, doi:10.1175/2007MWR2064.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 320 102 3
PDF Downloads 250 54 1