A Strong Wind Event on the Ross Ice Shelf, Antarctica: A Case Study of Scale Interactions

Sheeba Nettukandy Chenoli National Antarctic Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia

Search for other papers by Sheeba Nettukandy Chenoli in
Current site
Google Scholar
PubMed
Close
,
John Turner National Antarctic Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia

Search for other papers by John Turner in
Current site
Google Scholar
PubMed
Close
, and
Azizan Abu Samah National Antarctic Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia

Search for other papers by Azizan Abu Samah in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In situ observations, satellite imagery, numerical weather prediction, and reanalysis fields are used to investigate the synoptic and mesoscale environment of a strong wind event (SWE) at McMurdo Station/Ross Island region on the Ross Ice Shelf, Antarctica, on 10 October 2003. The SWE occurred during the passage of a sequence of three mesoscale low pressure systems from the central Ross Ice Shelf to the southwest Ross Sea. A potential vorticity (PV) analysis showed that the lows drew air of continental origin down the glacial valleys of the Transantarctic Mountains and onto the ice shelf as a katabatic drainage flow. However, the analysis indicated that the air mass associated with the SWE was of recurved maritime origin drawn in by the second mesoscale low (L2). This air mass approached McMurdo Station from the south where interactions with the orography played a critical role. In the early stages of the event, when the wind speed was less than 10 m s−1, the air was deflected around the topographical features, such as Minna Bluff and Black and White Islands. As the pressure gradient increased, winds of more than 10 m s−1 crossed the orography and developed mountain waves along the lee slopes. When the Froude number became larger than 1, large-amplitude vertically propagating mountain waves developed over the McMurdo Station/Ross Island area, increasing the wind to 16 m s−1. The reanalysis fields did not resolve the mesoscale lows; however, the Antarctic Mesoscale Prediction System (AMPS) model was able to simulate important characteristics of the SWE such as the mesoscale low pressure system, flow around the topographical barrier, and the mountain wave.

Additional affiliation: British Antarctic Survey, Cambridge, United Kingdom.

Corresponding author address: Sheeba Nettukandy Chenoli, National Antarctic Research Centre, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: sheeba@um.edu.my

Abstract

In situ observations, satellite imagery, numerical weather prediction, and reanalysis fields are used to investigate the synoptic and mesoscale environment of a strong wind event (SWE) at McMurdo Station/Ross Island region on the Ross Ice Shelf, Antarctica, on 10 October 2003. The SWE occurred during the passage of a sequence of three mesoscale low pressure systems from the central Ross Ice Shelf to the southwest Ross Sea. A potential vorticity (PV) analysis showed that the lows drew air of continental origin down the glacial valleys of the Transantarctic Mountains and onto the ice shelf as a katabatic drainage flow. However, the analysis indicated that the air mass associated with the SWE was of recurved maritime origin drawn in by the second mesoscale low (L2). This air mass approached McMurdo Station from the south where interactions with the orography played a critical role. In the early stages of the event, when the wind speed was less than 10 m s−1, the air was deflected around the topographical features, such as Minna Bluff and Black and White Islands. As the pressure gradient increased, winds of more than 10 m s−1 crossed the orography and developed mountain waves along the lee slopes. When the Froude number became larger than 1, large-amplitude vertically propagating mountain waves developed over the McMurdo Station/Ross Island area, increasing the wind to 16 m s−1. The reanalysis fields did not resolve the mesoscale lows; however, the Antarctic Mesoscale Prediction System (AMPS) model was able to simulate important characteristics of the SWE such as the mesoscale low pressure system, flow around the topographical barrier, and the mountain wave.

Additional affiliation: British Antarctic Survey, Cambridge, United Kingdom.

Corresponding author address: Sheeba Nettukandy Chenoli, National Antarctic Research Centre, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: sheeba@um.edu.my
Save
  • Basset, H. A., and A. M. Ali, 2006: Diagnostics of cyclogenesis using potential vorticity. Atmósfera, 19 (4), 213234.

  • Breckenridge, C. J., U. Radok, C. R. Stearns, and D. H. Bromwich, 1993: Katabatic winds along the Transantarctic Mountains. Antarctic Research Series: Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, D. H. Bromwich and C. R. Stearns, Eds., Amer. Geophys. Union, 69–92.

  • Brighton, P. W. M., 1978: Strongly stratified flow past three-dimensional obstacles. Quart. J. Roy. Meteor. Soc., 104, 289307, doi:10.1002/qj.49710444005.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1989: Satellite analysis of Antarctic katabatic wind behavior. Bull. Amer. Meteor. Soc., 70, 738749, doi:10.1175/1520-0477(1989)070<0738:SAOAKW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1991: Mesoscale cyclogenesis over the southwestern Ross Sea linked to strong katabatic winds. Mon. Wea. Rev., 119, 17361752, doi:10.1175/1520-0493(1991)119<1736:MCOTSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1992: A satellite case-study of a katabatic surge along the Transantarctic Mountains. Int. J. Remote Sens., 13, 5566, doi:10.1080/01431169208904025.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. F. Carrasco, and C. R. Stearns, 1992: Satellite observations of katabatic-wind propagation for great distances across the Ross Ice Shelf. Mon. Wea. Rev., 120, 19401949, doi:10.1175/1520-0493(1992)120<1940:SOOKWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., Y. Du, and T. R. Parish, 1994: Numerical simulation of winter katabatic winds from west Antarctica crossing Siple Coast and the Ross Ice Shelf. Mon. Wea. Rev., 122, 14171435, doi:10.1175/1520-0493(1994)122<1417:NSOWKW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. J. Cassano, T. Klein, G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box , 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129, 22902309, doi:10.1175/1520-0493(2001)129<2290:MMOKWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., T. Haack, and R. M. Samelson, 1999: Mesoscale simulation of supercritical, subcritical, and transcritical flow along coastal topography. J. Atmos. Sci., 56, 27802795, doi:10.1175/1520-0469(1999)056<2780:MSOSSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., and D. H. Bromwich, 1994: Climatological aspects of mesoscale cyclogenesis over the Ross Sea and Ross Ice Shelf regions of Antarctica. Mon. Wea. Rev., 122, 24052425, doi:10.1175/1520-0493(1994)122<2405:CAOMCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., D. H. Bromwich, and A. J. Monaghan, 2003: Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea. Mon. Wea. Rev., 131, 289300, doi:10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., J. E. Box, D. H. Bromwich, L. Li, and K. Steffen, 2001: Evaluation of Polar MM5 simulations of Greenland’s atmospheric circulation. J. Geophys. Res., 106, 13 86713 889, doi:10.1029/2001JD900044.

    • Search Google Scholar
    • Export Citation
  • Chenoli, S. N., J. Turner, and A. A. Samah, 2012: A climatology of strong wind events at McMurdo Station, Antarctica. Int. J. Climatol., 33, 2667–2681, doi:10.1002/joc.3617.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1971: Atmospheric frontogenesis models: Some solutions. Quart. J. Roy. Meteor. Soc., 97, 139153, doi:10.1002/qj.49709741202.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and W. H. Snyder, 1980: Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671704, doi:10.1017/S0022112080002303.

    • Search Google Scholar
    • Export Citation
  • Keliher, T. E., 1975: The occurrence of microbarograph-detected gravity waves compared with the existence of dynamically unstable wind shear layers. J. Geophys. Res., 80, 29672976, doi:10.1029/JC080i021p02967.

    • Search Google Scholar
    • Export Citation
  • Klein, A. G., M. C. Kennicutt, G. A. Wolff, S. T. Sweet, T. Bloxom, D. A. Gielstra, and M. Cleckley, 2008: The historical development of McMurdo station, Antarctica, an environmental perspective. Polar Geogr., 31, 119144, doi:10.1080/10889370802579856.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320339, doi:10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic Automatic Weather Station Program: 30 years of polar observation. Bull. Amer. Meteor. Soc., 93, 15191537, doi:10.1175/BAMS-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K.-K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 16021617, doi:10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. H. Bromwich, J. G. Powers, and K. W. Manning, 2005: The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. J. Climate, 18, 11741189, doi:10.1175/JCLI3336.1.

    • Search Google Scholar
    • Export Citation
  • O’Connor, W. P., and D. H. Bromwich, 1988: Surface airflow around Windless Bight, Ross Island, Antarctica. Quart. J. Roy. Meteor. Soc., 114, 917938, doi:10.1002/qj.49711448205.

    • Search Google Scholar
    • Export Citation
  • O’Connor, W. P., D. H. Bromwich, and J. F. Carrasco, 1994: Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island. Mon. Wea. Rev., 122, 137150, doi:10.1175/1520-0493(1994)122<0137:CFBWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillpot, H. R., 1991: The derivation of 500 hPa height from automatic weather station surface observations in the Antarctic continental interior. Aust. Meteor. Mag., 39, 7986.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., 2007: Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting (WRF) model. Mon. Wea. Rev., 135, 31343157, doi:10.1175/MWR3459.1.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y. H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System. Bull. Amer. Meteor. Soc., 84, 15331545, doi:10.1175/BAMS-84-11-1533.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, doi:10.1175/BAMS-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 624 pp.

  • Seefeldt, M. W., G. J. Tripoli, and C. R. Stearns, 2003: A high-resolution numerical simulation of the wind flow in the Ross Island region, Antarctica. Mon. Wea. Rev., 131, 435458, doi:10.1175/1520-0493(2003)131<0435:AHRNSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seefeldt, M. W., J. J. Cassano, and T. R. Parish, 2007: Dominant regimes of the Ross Ice Shelf surface wind field during austral autumn 2005. J. Appl. Meteor. Climatol., 46, 19331955, doi:10.1175/2007JAMC1442.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, W. H., R. S. Thompson, R. E. Eskridge, R. E. Lawson, I. P. Castro, J. T. Lee, J. C. R. Hunt, and Y. Ogawa, 1985: The structure of strong stratified flow over hills: Dividing-streamline concept. J. Fluid Mech., 152, 249288, doi:10.1017/S0022112085000684.

    • Search Google Scholar
    • Export Citation
  • Steinhoff, D. F., D. H. Bromwich, M. Lambertson, S. L. Knuth, and M. A. Lazzara, 2008: A dynamical investigation of the May 2004 McMurdo Antarctica severe wind event using AMPS. Mon. Wea. Rev., 136, 7–26, doi:10.1175/2007MWR1999.1.

    • Search Google Scholar
    • Export Citation
  • Turner, J., S. N. Chenoli, A. A. Samah, G. Marshall, T. Phillips, and A. Orr, 2009: Strong wind events in the Antarctic. J. Geophys. Res., 114, D18103, doi:10.1029/2008JD011642.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 82 1
PDF Downloads 230 59 0