Examination of a Stochastic and Deterministic Convection Parameterization in the COSMO Model

Kirstin Kober Ludwig-Maximilians-Universität, Munich, Germany

Search for other papers by Kirstin Kober in
Current site
Google Scholar
PubMed
Close
,
Annette M. Foerster Ludwig-Maximilians-Universität, Munich, Germany

Search for other papers by Annette M. Foerster in
Current site
Google Scholar
PubMed
Close
, and
George C. Craig Ludwig-Maximilians-Universität, Munich, Germany

Search for other papers by George C. Craig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stochastic parameterizations allow the representation of the small-scale variability of parameterized physical processes. This study investigates whether additional variability introduced by a stochastic convection parameterization leads to improvements in the precipitation forecasts. Forecasts are calculated with two different ensembles: one considering large-scale and convective variability with the stochastic Plant–Craig convection parameterization and one considering only large-scale variability with the standard Tiedtke convection parameterization. The forecast quality of both ensembles is evaluated in comparison with radar observations for two case studies with weak and strong synoptic forcing of convection and measured with neighborhood and probabilistic verification methods. The skill of the ensemble based on the Plant–Craig convection parameterization relative to the ensemble with the Tiedtke parameterization strongly depends on the synoptic situation in which convection occurs. In the weak forcing case, where the convective precipitation is highly intermittent, the ensemble based on the stochastic parameterization is superior, but the scheme produces too much small-scale variability in the strong forcing case. In the future, the degree of stochastic variability could be tuned, and these results show that parameters should be chosen in a regime-dependent manner.

Current affiliation: University of Hawai‘i at Mānoa, Honolulu, Hawaii.

Corresponding author address: Kirstin Kober, Ludwig-Maximilians-Universität München, Theresienstr. 37, Munich 80333, Germany. E-mail: kirstin.kober@lmu.de

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Abstract

Stochastic parameterizations allow the representation of the small-scale variability of parameterized physical processes. This study investigates whether additional variability introduced by a stochastic convection parameterization leads to improvements in the precipitation forecasts. Forecasts are calculated with two different ensembles: one considering large-scale and convective variability with the stochastic Plant–Craig convection parameterization and one considering only large-scale variability with the standard Tiedtke convection parameterization. The forecast quality of both ensembles is evaluated in comparison with radar observations for two case studies with weak and strong synoptic forcing of convection and measured with neighborhood and probabilistic verification methods. The skill of the ensemble based on the Plant–Craig convection parameterization relative to the ensemble with the Tiedtke parameterization strongly depends on the synoptic situation in which convection occurs. In the weak forcing case, where the convective precipitation is highly intermittent, the ensemble based on the stochastic parameterization is superior, but the scheme produces too much small-scale variability in the strong forcing case. In the future, the degree of stochastic variability could be tuned, and these results show that parameters should be chosen in a regime-dependent manner.

Current affiliation: University of Hawai‘i at Mānoa, Honolulu, Hawaii.

Corresponding author address: Kirstin Kober, Ludwig-Maximilians-Universität München, Theresienstr. 37, Munich 80333, Germany. E-mail: kirstin.kober@lmu.de

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Save
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Rauschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Bierdel, L., P. Friederichs, and S. Bentzien, 2012: Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMO-DE. Meteor. Z., 21, 245258, doi:10.1127/0941-2948/2012/0319.

    • Search Google Scholar
    • Export Citation
  • Bright, D. R., and S. L. Mullen, 2002: Short-range ensemble forecasts of precipitation during the southwest monsoon. Wea. Forecasting, 17, 10801100, doi:10.1175/1520-0434(2002)017<1080:SREFOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., and G. C. Craig, 2006: Fluctuations in an equilibrium convective ensemble. Part II: Numerical experiments. J. Atmos. Sci., 63, 20052015, doi:10.1175/JAS3710.1.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and B. G. Cohen, 2006: Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J. Atmos. Sci., 63, 19962004, doi:10.1175/JAS3709.1.

    • Search Google Scholar
    • Export Citation
  • Dierer, S., and Coauthors, 2009: Deficiencies in quantitative precipitation forecasts: Sensitivity studies using the COSMO model. Meteor. Z., 18, 631645, doi:10.1127/0941-2948/2009/0420.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. C. Craig, S. L. Gray, P. A. Clark, and M. E. B. Gray, 2006: Mesoscale simulations of organized convection: Importance of convective equilibrium. Quart. J. Roy. Meteor. Soc., 132, 737756, doi:10.1256/qj.04.84.

    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P., and G. Craig, 2012: Ensemble forecasting with a stochastic convective parametrization based on equilibrium statistics. Atmos. Chem. Phys., 12, 45554565, doi:10.5194/acp-12-4555-2012.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., C. Snyder, and R. E. Morssroenemeijer, 2000: A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles. Mon. Wea. Rev., 128, 18351851, doi:10.1175/1520-0493(2000)128<1835:ACOPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keane, R., and R. Plant, 2012: Large-scale length and time-scales for use with stochastic convective parametrization. Quart. J. Roy. Meteor. Soc., 138, 11501164, doi:10.1002/qj.992.

    • Search Google Scholar
    • Export Citation
  • Keane, R., G. C. Craig, C. Keil, and G. Zängl, 2014: The Plant–Craig stochastic convection scheme in ICON and its scale adaptivity. J. Atmos. Sci., 71, 34043415, doi:10.1175/JAS-D-13-0331.1.

    • Search Google Scholar
    • Export Citation
  • Keil, C., F. Heinlein, and G. C. Craig, 2014: The convective adjustment time-scale as indicator of predictability of convective precipitation. Quart. J. Roy. Meteor. Soc., 140, 480–490, doi:10.1002/qj.2143.

    • Search Google Scholar
    • Export Citation
  • Kober, K., C. Keil, G. C. Craig, and A. Dörnbrack, 2012: Blending a probabilistic nowcasting method with a high-resolution numerical weather prediction ensemble for convective precipitation forecasts. Quart. J. Roy. Meteor. Soc., 138, 755768, doi:10.1002/qj.939.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 1552–1562, doi:10.1002/qj.2238.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133, 18651885, doi:10.1175/MWR2949.1.

  • Lin, J., and J. Neelin, 2003: Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett., 30, 1162, doi:10.1029/2002GL016203.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, C. Marsigli, A. Montani, F. Nerozzi, and T. Paccagnella, 2001: A strategy for high-resolution ensemble prediction. Part I: Definition of representative members and global model experiments. Quart. J. Roy. Meteor. Soc., 127, 20692094, doi:10.1002/qj.49712757612.

    • Search Google Scholar
    • Export Citation
  • Plant, R., and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, doi:10.1175/2007JAS2263.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, N., and H. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 10861096, doi:10.1002/qj.2183.

    • Search Google Scholar
    • Export Citation
  • Selz, T., and G. Craig, 2014: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Wea. Rev., 143, 813–827, doi:10.1175/MWR-D-14-00140.1.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, doi:10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Stephan, K., S. Klink, and C. Schraff, 2008: Assimilation of radar derived rain rates into the convective scale model COSMO-DE at DWD. Quart. J. Roy. Meteor. Soc., 134, 13151326, doi:10.1002/qj.269.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and C. A. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., 136, 483496, doi:10.1175/2007MWR1870.1.

    • Search Google Scholar
    • Export Citation
  • Theis, S., A. Hense, and U. Damrath, 2005: Probabilistic precipitation forecasts from a deterministic model: A pragmatic approach. Meteor. Appl., 12, 257268, doi:10.1017/S1350482705001763.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 2844, doi:10.1111/j.1600-0870.2006.00159.x.

    • Search Google Scholar
    • Export Citation
  • Weusthoff, T., F. Ament, M. Arpagaus, and M. Rotach, 2010: Assessing the benefits of convection-permitting models by neighborhood verification: Examples from MAP D-PHASE. Mon. Wea. Rev., 138, 34183433, doi:10.1175/2010MWR3380.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Probability forecasts of discrete predictands. Statistical Methods in the Atmospheric Sciences, 2nd ed. Academic Press, 282298.

  • Zepeda-Arce, J., E. Foufoula-Georgiou, and K. Droegemeier, 2000: Space-time rainfall organization and its role in validating quantitative precipitation forecasts. J. Geophys. Res., 105, 10 12910 146, doi:10.1029/1999JD901087.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594, doi:10.1175/JAS4028.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 939 587 432
PDF Downloads 81 19 2