Influential Role of Moisture Supply from the Kuroshio/Kuroshio Extension in the Rapid Development of an Extratropical Cyclone

Hidetaka Hirata Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan

Search for other papers by Hidetaka Hirata in
Current site
Google Scholar
PubMed
Close
,
Ryuichi Kawamura Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan

Search for other papers by Ryuichi Kawamura in
Current site
Google Scholar
PubMed
Close
,
Masaya Kato Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan

Search for other papers by Masaya Kato in
Current site
Google Scholar
PubMed
Close
, and
Taro Shinoda Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan

Search for other papers by Taro Shinoda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focused on an explosive cyclone migrating along the southern periphery of the Kuroshio/Kuroshio Extension in the middle of January 2013 and examined how those warm currents played an active role in the rapid development of the cyclone using a high-resolution coupled atmosphere–ocean regional model. The evolutions of surface fronts of the simulated cyclone resemble the Shapiro–Keyser model. At the time of the maximum deepening rate, strong mesoscale diabatic heating areas appear over the bent-back front and the warm front east of the cyclone center. Diabatic heating over the bent-back front and the eastern warm front is mainly induced by the condensation of moisture imported by the cold conveyor belt (CCB) and the warm conveyor belt (WCB), respectively. The dry air parcels transported by the CCB can receive large amounts of moisture from the warm currents, whereas the very humid air parcels transported by the WCB can hardly be modified by those currents. The well-organized nature of the CCB plays a key role not only in enhancing surface evaporation from the warm currents but also in importing the evaporated vapor into the bent-back front. The imported vapor converges at the bent-back front, leading to latent heat release. The latent heating facilitates the cyclone’s development through the production of positive potential vorticity in the lower troposphere. Its deepening can, in turn, reinforce the CCB. In the presence of a favorable synoptic-scale environment, such a positive feedback process can lead to the rapid intensification of a cyclone over warm currents.

Corresponding author address: Hidetaka Hirata, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan. E-mail: h.hirata17@gmail.com

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Abstract

This study focused on an explosive cyclone migrating along the southern periphery of the Kuroshio/Kuroshio Extension in the middle of January 2013 and examined how those warm currents played an active role in the rapid development of the cyclone using a high-resolution coupled atmosphere–ocean regional model. The evolutions of surface fronts of the simulated cyclone resemble the Shapiro–Keyser model. At the time of the maximum deepening rate, strong mesoscale diabatic heating areas appear over the bent-back front and the warm front east of the cyclone center. Diabatic heating over the bent-back front and the eastern warm front is mainly induced by the condensation of moisture imported by the cold conveyor belt (CCB) and the warm conveyor belt (WCB), respectively. The dry air parcels transported by the CCB can receive large amounts of moisture from the warm currents, whereas the very humid air parcels transported by the WCB can hardly be modified by those currents. The well-organized nature of the CCB plays a key role not only in enhancing surface evaporation from the warm currents but also in importing the evaporated vapor into the bent-back front. The imported vapor converges at the bent-back front, leading to latent heat release. The latent heating facilitates the cyclone’s development through the production of positive potential vorticity in the lower troposphere. Its deepening can, in turn, reinforce the CCB. In the presence of a favorable synoptic-scale environment, such a positive feedback process can lead to the rapid intensification of a cyclone over warm currents.

Corresponding author address: Hidetaka Hirata, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan. E-mail: h.hirata17@gmail.com

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Save
  • Ahmadi-Givi, F., G. C. Craig, and R. S. Plant, 2004: The dynamics of a mid-latitude cyclone with very strong latent heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, doi:10.1256/qj.02.226.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., K. Takahashi, and T. Yamagata, 2006: The Red Sea outflow regulated by the Indian Monsoon. Cont. Shelf Res., 26, 14481468, doi:10.1016/j.csr.2006.02.017.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., J. P. Matthews, and K. G. Lamb, 2011: Modeling and energetics of tidally generated wave trains in the Lombok Strait: Impact of the Indonesian Throughflow. J. Geophys. Res., 116, C03023, doi:10.1029/2010JC006589.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., M. Yoshioka, M. Kato, A. Morimoto, T. Shinoda, and K. Tsuboki, 2015: A coupled atmosphere-ocean-surface-wave modeling system for understanding air-sea interactions under tropical cyclone conditions. Bull. Coastal Oceanogr., 52, 139148.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, doi:10.1175/MWR-D-11-00195.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120, 15351557, doi: 10.1002/qj.49712052006.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1992: Climatology of explosive cyclones off the East Asian coast. Mon. Wea. Rev., 120, 30293035, doi:10.1175/1520-0493(1992)120<3029:COECOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential vorticity diagnosis of the importance of initial structure and condensational heating in observed cyclogenesis. Mon. Wea. Rev., 120, 24092428, doi:10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., M. T. Stoelinga, and Y.-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 23092330, doi:10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., E. D. Grell, and M. A. Shapiro, 1996: The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124, 326, doi:10.1175/1520-0493(1996)124<0003:TBDNOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, doi:10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., 1995: Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus, 47A, 766778, doi:10.1034/j.1600-0870.1995.00119.x.

    • Search Google Scholar
    • Export Citation
  • Fu, S., J. Sun, and J. Sun, 2014: Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: A piecewise potential vorticity diagnosis. Tellus, 66A, 23210, doi:10.3402/tellusa.v66.23210.

    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2012: Assessment of turbulence closure models for resonant inertial response in the oceanic mixed layer using a large eddy simulation model. J. Oceanogr., 68, 285294, doi:10.1007/s10872-011-0095-3.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., J. R. Anderson, R. H. Grumm, and E. L. Gruner, 1989: North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117, 11411155, doi:10.1175/1520-0493(1989)117<1141:NPCSSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., M. Shiota, R. Kawamura, and H. Hatsushika, 2013: Influence of the monsoon variability and sea surface temperature front on the explosive cyclone activity in the vicinity of Japan during northern winter. SOLA, 9, 14, doi:10.2151/sola.2013-001.

    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, 2013: Outline of the operational numerical weather prediction at the Japan Meteorological Agency (March 2013). [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm.]

  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667, doi:10.1175/2010JCLI3346.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Korner, S., and J. E. Martin, 2000: Piecewise frontogenesis from a potential vorticity perspective: Methodology and a case study. Mon. Wea. Rev., 128, 12661288, doi:10.1175/1520-0493(2000)128<1266:PFFAPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1991a: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119, 457476, doi:10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991b: The interaction between baroclinic and diabatic processes in a numerical simulation of rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, doi:10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. J. Reed, and Y. Liu, 1996: The ERICA IOP 5 storm. Part III: Mesoscale cyclogenesis and precipitation parameterization. Mon. Wea. Rev., 124, 14091434, doi:10.1175/1520-0493(1996)124<1409:TEISPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and Y. Asuma, 2008: Numerical study of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 136, 712740, doi:10.1175/2007MWR2111.1.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and T. Enomoto, 2013: Predictability of explosive cyclogenesis over the northwestern Pacific region using ensemble reanalysis. Mon. Wea. Rev., 141, 37693785, doi:10.1175/MWR-D-12-00161.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. Alexander, N. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, doi:10.1175/2010JCLI3343.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C.-H., R. M. Wakimoto, and F. Roux, 1997: Observations of mesoscale circulations within extratropical cyclones over the North Atlantic Ocean during ERICA. Mon. Wea. Rev., 125, 341364, doi:10.1175/1520-0493(1997)125<0341:OOMCWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., and N. Marsili, 2002: Surface cyclolysis in the North Pacific Ocean. Part II: Piecewise potential vorticity diagnosis of a rapid cyclolysis event. Mon. Wea. Rev., 130, 12641281, doi:10.1175/1520-0493(2002)130<1264:SCITNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyazawa, Y., and Coauthors, 2009: Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis. J. Oceanogr., 65, 737756, doi:10.1007/s10872-009-0063-3.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, doi:10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. A. Shapiro, and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 21772199, doi:10.1175/1520-0493(1993)121<2177:TLCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and S. I. Kamikawa, 1990: Dynamics and boundary layer processes in two Asian cyclones. Mon. Wea. Rev., 118, 755771, doi:10.1175/1520-0493(1990)118<0755:DABLPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, doi:10.1175/JCLI-D-13-00223.1.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and M. T. Stoelinga, 2000: A coupled air–sea mesoscale model: Experiments in atmospheric sensitivity to marine roughness. Mon. Wea. Rev., 128, 208228, doi:10.1175/1520-0493(2000)128<0208:ACASMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913, doi:10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. Grell, and Y.-H. Kuo, 1993a: The ERICA IOP 5 storm. Part I: Analysis and simulation. Mon. Wea. Rev., 121, 15771594, doi:10.1175/1520-0493(1993)121<1577:TEISPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. Grell, and Y.-H. Kuo, 1993b: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612, doi:10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., Y.-H. Kuo, and S. Low-Nam, 1994: An adiabatic simulation of the ERICA IOP 4 storm: An example of quasi-ideal frontal cyclone development. Mon. Wea. Rev., 122, 26882708, doi:10.1175/1520-0493(1994)122<2688:AASOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, doi:10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., and H. Wernli, 2014: The linkage between the warm and cold conveyor belts in an idealized extratropical cyclone. J. Atmos. Sci., 71, 14431459, doi:10.1175/JAS-D-13-0177.1.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, doi:10.1175/JAS-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2001: Reexamining the cold conveyor belt. Mon. Wea. Rev., 129, 22052225, doi:10.1175/1520-0493(2001)129<2205:RTCCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Shapiro, M. A., and Coauthors, 1999: A planetary-scale to mesoscale perspective of the life cycles of extratropical cyclones: The bridge between theory and observations. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Gronas, Eds., Amer. Meteor. Soc., 139–186.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, I., 1991: “Coupling development”: An efficient mechanism for the development of extratropical cyclones. J. Meteor. Soc. Japan, 69, 609628.

    • Search Google Scholar
    • Export Citation
  • Takayabu, I., H. Niino, M. D. Yamanaka, and S. Fukao, 1996: An observational study of cyclogenesis in the lee of the Japan central mountains. Meteor. Atmos. Phys., 61, 3953, doi:10.1007/BF01029710.

    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., and A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, H. P. Zima et al., Eds., Springer, 243–259.

  • Tsuboki, K., and A. Sakakibara, 2007: Numerical prediction of high-impact weather systems—The textbook for Seventeenth IHP training course in 2007. HyARC, Nagoya University, Japan, and UNESCO, 273 pp.

  • Wang, C.-C., and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129, 14811499, doi:10.1175/1520-0493(2001)129<1481:ACSOEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., J. E. Martin, and G. W. Petty, 2011: Piecewise potential vorticity diagnosis of the development of a polar low over the Sea of Japan. Tellus, 63A, 198211, doi:10.1111/j.1600-0870.2011.00511.x.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 132, 11211142, doi:10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshiike, S., and R. Kawamura, 2009: Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects. J. Geophys. Res., 114, D13110, doi:10.1029/2009JD011820.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., W. Perrie, and W. Li, 2006: Impacts of waves and sea spray on midlatitude storm structure and intensity. Mon. Wea. Rev., 134, 24182442, doi:10.1175/MWR3191.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1228 521 44
PDF Downloads 599 215 26