Bulk Mass-Flux Perturbation Formulation for a Unified Approach of Deep Convection at High Resolution

Luc Gerard Royal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by Luc Gerard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Parameterizing deep convection at model resolutions of a few kilometers or less requires diverging from several simplifying assumptions valid at coarser resolutions. The separation or complementarity between the deep-convection scheme and the model cloud scheme must be addressed properly to prevent a double counting of some phenomena, account for evolution in time, and keep consistent results while approaching resolutions where deep convection can be treated explicitly (without parameterization). In this paper, the author formulates and tests a perturbation approach of the bulk mass-flux representation of deep convective updrafts and downdrafts. The subgrid deep-convection scheme represents only the effect of the unresolved part of the real updrafts, complementing an explicit part associated with the mean gridbox vertical velocity. Special attention is paid to the ordering and interactions of the moist parameterizations, the formulation of the closure and of the triggering, and the accounting of time evolution aspects. The multiresolution behavior of the scheme is assessed in the operational numerical prediction model ALARO [a version of the Action de Recherche Petite Echelle Grande Echelle-Aire Limitée Adaptation Dynamique Développement International (ARPEGE-ALADIN) operational limited area model with a revised and modular structure of the physical parameterizations]. Unlike most mass-flux schemes, the parameterized part gradually fades out when the model resolution is increased, allowing the results to approach those of an explicit treatment of deep convection.

Corresponding author address: Luc Gerard, Dept. R&D, Royal Meteorological Institute of Belgium, 3 Avenue Circulaire, B1180 Brussels, Belgium. E-mail: luc.gerard@meteo.be

Abstract

Parameterizing deep convection at model resolutions of a few kilometers or less requires diverging from several simplifying assumptions valid at coarser resolutions. The separation or complementarity between the deep-convection scheme and the model cloud scheme must be addressed properly to prevent a double counting of some phenomena, account for evolution in time, and keep consistent results while approaching resolutions where deep convection can be treated explicitly (without parameterization). In this paper, the author formulates and tests a perturbation approach of the bulk mass-flux representation of deep convective updrafts and downdrafts. The subgrid deep-convection scheme represents only the effect of the unresolved part of the real updrafts, complementing an explicit part associated with the mean gridbox vertical velocity. Special attention is paid to the ordering and interactions of the moist parameterizations, the formulation of the closure and of the triggering, and the accounting of time evolution aspects. The multiresolution behavior of the scheme is assessed in the operational numerical prediction model ALARO [a version of the Action de Recherche Petite Echelle Grande Echelle-Aire Limitée Adaptation Dynamique Développement International (ARPEGE-ALADIN) operational limited area model with a revised and modular structure of the physical parameterizations]. Unlike most mass-flux schemes, the parameterized part gradually fades out when the model resolution is increased, allowing the results to approach those of an explicit treatment of deep convection.

Corresponding author address: Luc Gerard, Dept. R&D, Royal Meteorological Institute of Belgium, 3 Avenue Circulaire, B1180 Brussels, Belgium. E-mail: luc.gerard@meteo.be
Save
  • Arakawa, A., and W. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, doi:10.1175/JAS-D-12-0330.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., J.-H. Jung, and C.-M. Wu, 2011: Towards unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, doi:10.5194/acp-11-3731-2011.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Kohler, T. Jung, F. Doblas-Reyes, and M. Leutbecher, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J. P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Steinheimer, P. Bechtold, and J.-F. Geleyn, 2013: A stochastic parametrization for deep convection using cellular automata. Quart. J. Roy. Meteor. Soc., 139, 15331543, doi:10.1002/qj.2108.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. F. Silva Dias, 1979: Unsaturated downdraft thermodynamics in cumulonimbus. J. Atmos. Sci., 36, 10611071, doi:10.1175/1520-0469(1979)036<1061:UDTIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113, 21082121, doi:10.1175/1520-0493(1985)113<2108:ASPOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Meutter, P., L. Gerard, G. Smet, K. Hamid, R. Hamdi, D. Degrauwe, and P. Termonia, 2015: Predicting small-scale, short-lived downbursts: Case study with the NWP limited-area ALARO model for the Pukkelpop thunderstorm. Mon. Wea. Rev., 143, 742756, doi:10.1175/MWR-D-14-00290.1.

    • Search Google Scholar
    • Export Citation
  • Deng, A., and D. R. Stauffer, 2006: On improving 4-km mesoscale model simulations. J. Appl. Meteor. Climatol., 45, 361381, doi:10.1175/JAM2341.1.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and A. P. Siebesma, 2010: Analytical expressions for entrainment and detrainment in cumulus convection. Quart. J. Roy. Meteor. Soc., 136, 12161227, doi:10.1002/qj.640.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, doi:10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • De Troch, R., R. Hamdi, H. V. D. Vyver, J.-F. Geleyn, and P. Termonia, 2013: Multiscale performance of the ALARO-0 model for simulating extreme summer precipitation climatology in Belgium. J. Climate, 26, 8895–8915, doi:10.1175/JCLI-D-12-00844.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappel, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733, doi:10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with the meso-gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711730, doi:10.1002/qj.58.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., and J.-F. Geleyn, 2005: Evolution of a subgrid deep convection parametrization in a limited area model with increasing resolution. Quart. J. Roy. Meteor. Soc., 131, 22932312, doi:10.1256/qj.04.72.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., J.-M. Piriou, R. Brožková, J.-F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, doi:10.1175/2009MWR2750.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., J.-J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 126, 16851710, doi:10.1002/qj.49712656607.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., R. S. Plant, T. H. M. Stein, R. Hogan, J. C. Nicol, H. W. Lean, C. Halliwell, and P. A. Clark, 2014: Mixing-length controls on high-resolution simulations of convective storms. Quart. J. Roy. Meteor. Soc., 141, 272284, doi:10.1002/qj.2356.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620, doi:10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., and A. Arakawa, 2004: The resolution dependence of model physics: Illustrations from nonhydrostatic model experiments. J. Atmos. Sci., 61, 88102, doi:10.1175/1520-0469(2004)061<0088:TRDOMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fristsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Kuell, V., and A. Bott, 2008: A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models. Meteor. Z., 17, 775783, doi:10.1127/0941-2948/2008/0342.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1962: On the controlling influences of eddy diffusion on thermal convection. J. Atmos. Sci., 19, 236243, doi:10.1175/1520-0469(1962)019<0236:OTCIOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., and J. D. Neelin, 2003: Towards stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett., 30, 1162, doi:10.1029/2002GL016203.

    • Search Google Scholar
    • Export Citation
  • Ma, L.-M., and Z.-M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190211, doi:10.1016/j.atmosres.2008.09.022.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1997: Equilibrium vs. activation control of large-scale variations of tropical deep convection. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Kluwer Academic Publishers, 321–358.

  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179, doi:10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, D.-M., and D. D. A. Randall, 1998: A cumulus parametrization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981, doi:10.1002/qj.49712454714.

    • Search Google Scholar
    • Export Citation
  • Park, S., 2014a: A unified convection scheme (UNICON). Part I: Formulation. J. Atmos. Sci., 71, 39023930, doi:10.1175/JAS-D-13-0233.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., 2014b: A unified convection scheme (UNICON). Part II: Simulation. J. Atmos. Sci., 71, 39313973, doi:10.1175/JAS-D-13-0234.1.

    • Search Google Scholar
    • Export Citation
  • Piriou, J.-M., J.-L. Redelsperger, J.-F. Geleyn, J.-P. Lafore, and F. Guichard, 2007: An approach for convective parameterization with memory, in separating microphysics and transport in grid-scale equations. J. Atmos. Sci., 64, 41274139, doi:10.1175/2007JAS2144.1.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, doi:10.1175/2007JAS2263.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and J. M. Fritsch, 1996: A general framework for convective trigger functions. Mon. Wea. Rev., 124, 24382452, doi:10.1175/1520-0493(1996)124<2438:AGFFCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, doi:10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521773, doi:10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., and G. K. Walker, 1993: A rain evaporation and downdraft parameterization to complement a cumulus updraft scheme and its evaluation using GATE data. Mon. Wea. Rev., 121, 30193039, doi:10.1175/1520-0493(1993)121<3019:AREADP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., and A. Arakawa, 2014: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II. J. Atmos. Sci., 71, 20892103, doi:10.1175/JAS-D-13-0382.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., A. Arakawa, and S. K. Krueger, 1992: The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. J. Atmos. Sci., 49, 24022420, doi:10.1175/1520-0469(1992)049<2402:TMBOCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and R. S. Plant, 2012: Convective quasi-equilibrium. Rev. Geophys., 50, RG4004, doi:10.1029/2011RG000378.

  • Yano, J.-I., P. Bénard, F. Couvreux, and A. Lahellec, 2010: NAM-SCA: A nonhydrostatic anelastic model with segmentally constant approximations. Mon. Wea. Rev., 138, 19571974, doi:10.1175/2009MWR2997.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., M. Bister, Ž. Fuchs, L. Gerard, V. T. J. Phillips, S. Barkidija, and J.-M. Piriou, 2013: Phenomenology of convection-parameterization closure. Atmos. Chem. Phys., 13, 41114131, doi:10.5194/acp-13-4111-2013.

    • Search Google Scholar
    • Export Citation
  • Zacharov, P., D. Rezacova, and R. Brožková, 2013: Evaluation of the QPF of convective flash flood rainfalls over the Czech territory in 2009. Atmos. Res., 131, 95107, doi:10.1016/j.atmosres.2013.03.007.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., E.-Y. Hsie, and M. W. Moncrieff, 1988: A comparison of implicit and explicit predictions of convective and stratiform precipitating weather systems with a meso-β-scale numerical model. Quart. J. Roy. Meteor. Soc., 114, 3160, doi:10.1002/qj.49711447903.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 392 96 5
PDF Downloads 235 51 5