A Linearized Prognostic Cloud Scheme in NASA’s Goddard Earth Observing System Data Assimilation Tools

Daniel Holdaway Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences, Technology and Research, Universities Space Research Association, Columbia, Maryland

Search for other papers by Daniel Holdaway in
Current site
Google Scholar
PubMed
Close
,
Ronald Errico Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences, Technology and Research, Morgan State University, Baltimore, Maryland

Search for other papers by Ronald Errico in
Current site
Google Scholar
PubMed
Close
,
Ronald Gelaro Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ronald Gelaro in
Current site
Google Scholar
PubMed
Close
,
Jong G. Kim Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications Inc., Lanham, Maryland

Search for other papers by Jong G. Kim in
Current site
Google Scholar
PubMed
Close
, and
Rahul Mahajan Oak Ridge Associated Universities, NASA Postdoctoral Program, Oak Ridge, Tennessee, and Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Rahul Mahajan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA’s Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.

Corresponding author address: Daniel Holdaway, NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Code 610.1, Greenbelt, MD 20771. E-mail: dan.holdaway@nasa.gov

Abstract

A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA’s Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.

Corresponding author address: Daniel Holdaway, NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Code 610.1, Greenbelt, MD 20771. E-mail: dan.holdaway@nasa.gov
Save
  • Amerault, C., X. L. Zou, and J. Doyle, 2008: Tests of an adjoint mesoscale model with explicit moist physics on the cloud scale. Mon. Wea. Rev., 136, 21202132, doi:10.1175/2007MWR2259.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J., M. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, doi:10.1175/JAS3791.1.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charpentier, I., 2001: Checkpointing schemes for adjoint codes: Application to the meteorological model Meso-NH. SIAM J. Sci. Comput., 22, 21352151, doi:10.1137/S1064827598343735.

    • Search Google Scholar
    • Export Citation
  • Claerbout, J., 2014: Geophysical Image Estimation by Example. lulu.com, 252 pp.

  • Ehrendorfer, M., and R. Errico, 1995: Mesoscale predictability and the spectrum of optimal perturbations. J. Atmos. Sci., 52, 34753500, doi:10.1175/1520-0469(1995)052<3475:MPATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Errico, R., and K. Raeder, 1999: An examination of the accuracy of the linearization of a mesoscale model with moist physics. Quart. J. Roy. Meteor. Soc., 125, 169195, doi:10.1002/qj.49712555310.

    • Search Google Scholar
    • Export Citation
  • Errico, R., P. Bauer, and J.-F. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 37853798, doi:10.1175/2006JAS2044.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev., 138, 40094025, doi:10.1175/2010MWR3393.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. Mahajan, and R. Todling, 2014: Observation impacts for longer forecast lead-times. 18th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Atlanta, GA, Amer. Meteor. Soc., 1.1. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper234632.html.]

  • Holdaway, D., and R. Errico, 2014: Using Jacobian sensitivities to assess a linearisation of the relaxed Arakawa–Shubert convection scheme. Quart. J. Roy. Meteor. Soc., 140, 13191332, doi:10.1002/qj.2210.

    • Search Google Scholar
    • Export Citation
  • Holdaway, D., J. Thuburn, and N. Wood, 2013: Comparison of Lorenz and Charney–Phillips vertical discretisations for dynamics–boundary layer coupling. Part II: Transients. Quart. J. Roy. Meteor. Soc., 139, 10871098, doi:10.1002/qj.2017.

    • Search Google Scholar
    • Export Citation
  • Holdaway, D., R. Errico, R. Gelaro, and J. G. Kim, 2014: Inclusion of linearized moist physics in NASA’s Goddard Earth Observing System data assimilation tools. Mon. Wea. Rev., 142, 414433, doi:10.1175/MWR-D-13-00193.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., G. Skofronick-Jackson, C. D. Kummerow, and J. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. C. Michaelides, Ed., Springer, 131–169.

  • Janisková, M., J. Thépaut, and J.-F. Geleyn, 1999a: Simplified and regular physical parameterizations for incremental four-dimensional variational assimilation. Mon. Wea. Rev., 127, 2645, doi:10.1175/1520-0493(1999)127<0026:SARPPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janisková, M., F. Veersé, J.-N. Thépaut, G. Desroziers, and B. Pouponneau, 1999b: Impact of a simplified physical package in 4D-var analyses of FASTEX situations. Quart. J. Roy. Meteor. Soc., 125, 24652485, doi:10.1002/qj.49712555907.

    • Search Google Scholar
    • Export Citation
  • Jung, B.-J., and H. M. Kim, 2009: Moist adjoint-based forecast sensitivities for a heavy snowfall event over the Korean Peninsula on 4–5 March 2004. J. Geophys. Res., 114, D15104, doi:10.1029/2008JD011370.

  • Jung, B.-J., H. M. Kim, T. Auligné, X. Zhang, X. Zhang, and X.-Y. Huang, 2013: Adjoint-derived observation impact using WRF in the western North Pacific. Mon. Wea. Rev., 141, 40804097, doi:10.1175/MWR-D-12-00197.1.

    • Search Google Scholar
    • Export Citation
  • Langland, R., and N. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, doi:10.1111/j.1600-0870.2004.00056.x.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., and P. J. Crutzen, 1998: The impact of cloud particle gravitational settling on soluble trace gas distributions. Tellus, 50B, 263289, doi:10.1034/j.1600-0889.1998.t01-2-00005.x.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., and E. Moreau, 2005: A convection scheme for data assimilation: Description and initial tests. Quart. J. Roy. Meteor. Soc., 131, 409436, doi:10.1256/qj.04.69.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and R. T. Marriott, 2014: Forecast sensitivity to observations in the Met Office global numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 140, 209224, doi:10.1002/qj.2122.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., and F. Rabier, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. II: Experimental results with improved physics. Quart. J. Roy. Meteor. Soc., 126, 11711190, doi:10.1002/qj.49712656416.

    • Search Google Scholar
    • Export Citation
  • Molod, A., 2012: Constraints on the profiles of total water PDF in AGCMs from AIRS and a high-resolution model. J. Climate, 25, 83418352, doi:10.1175/JCLI-D-11-00412.1.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, doi:10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., and M. Tanguay, 1998: Linearizing iterative processes for four-dimensional data-assimilation schemes. Quart. J. Roy. Meteor. Soc., 124, 17151742, doi:10.1002/qj.49712454917.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and B. Ritter, 1985: Cloud prediction in the ECMWF model. Tech. Rep. 46, ECMWF, 49 pp.

  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, doi:10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Stappers, R. J. J., and J. Barkmeijer, 2013: Gaussian quadrature 4D-Var. Quart. J. Roy. Meteor. Soc., 139, 14621472, doi:10.1002/qj.2056.

    • Search Google Scholar
    • Export Citation
  • Stiller, O., 2009: Efficient moist physics schemes for data assimilation. II: Deep convection. Quart. J. Roy. Meteor. Soc., 135, 721738, doi:10.1002/qj.362.

    • Search Google Scholar
    • Export Citation
  • Stiller, O., and S. P. Ballard, 2009: Efficient moist physics schemes for data assimilation. I: Large-scale clouds and condensation. Quart. J. Roy. Meteor. Soc., 135, 707720, doi:10.1002/qj.400.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and T. W. N. Haine, 2001: Adjoints of nonoscillatory advection schemes. J. Comput. Phys., 171, 616631, doi:10.1006/jcph.2001.6799.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, doi:10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and M. Janiskova, 2004: A cloud scheme for data assimilation: Description and initial tests. Quart. J. Roy. Meteor. Soc., 130, 24952517, doi:10.1256/qj.03.162.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 29 2
PDF Downloads 53 15 0