Optimized Localization and Hybridization to Filter Ensemble-Based Covariances

Benjamin Ménétrier Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Benjamin Ménétrier in
Current site
Google Scholar
PubMed
Close
and
Thomas Auligné Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Thomas Auligné in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Localization and hybridization are two methods used in ensemble data assimilation to improve the accuracy of sample covariances. It is shown in this paper that it is beneficial to consider them jointly in the framework of linear filtering of sample covariances. Following previous work on localization, an objective method is provided to optimize both localization and hybridization coefficients simultaneously. Theoretical and experimental evidence shows that if optimal weights are used, localized-hybridized sample covariances are always more accurate than their localized-only counterparts, whatever the static covariance matrix specified for the hybridization. Experimental results obtained using a 1000-member ensemble as a reference show that the method developed in this paper can efficiently provide localization and hybridization coefficients consistent with the variable, vertical level, and ensemble size. Spatially heterogeneous optimization is shown to improve the accuracy of the filtered covariances, and consideration of both vertical and horizontal covariances is proven to have an impact on the hybridization coefficients.

Corresponding author address: Benjamin Ménétrier, NCAR/MMM, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: menetrie@ucar.edu

Abstract

Localization and hybridization are two methods used in ensemble data assimilation to improve the accuracy of sample covariances. It is shown in this paper that it is beneficial to consider them jointly in the framework of linear filtering of sample covariances. Following previous work on localization, an objective method is provided to optimize both localization and hybridization coefficients simultaneously. Theoretical and experimental evidence shows that if optimal weights are used, localized-hybridized sample covariances are always more accurate than their localized-only counterparts, whatever the static covariance matrix specified for the hybridization. Experimental results obtained using a 1000-member ensemble as a reference show that the method developed in this paper can efficiently provide localization and hybridization coefficients consistent with the variable, vertical level, and ensemble size. Spatially heterogeneous optimization is shown to improve the accuracy of the filtered covariances, and consideration of both vertical and horizontal covariances is proven to have an impact on the hybridization coefficients.

Corresponding author address: Benjamin Ménétrier, NCAR/MMM, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: menetrie@ucar.edu
Save
  • Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99111, doi:10.1016/j.physd.2006.02.011.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, doi:10.1175/MWR-D-11-00013.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and L. Lei, 2013: Empirical localization of observation impact in ensemble Kalman filters. Mon. Wea. Rev., 141, 41404153, doi:10.1175/MWR-D-12-00330.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2007: Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 20292044, doi:10.1002/qj.169.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61A, 8496, doi:10.1111/j.1600-0870.2008.00371.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111, doi:10.1111/j.1600-0870.2008.00372.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon. Wea. Rev., 139, 12411255, doi:10.1175/2010MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and E. A. Satterfield, 2013: Hidden error variance theory. Part I: Exposition and analytic model. Mon. Wea. Rev., 141, 14541468, doi:10.1175/MWR-D-12-00118.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., E. A. Satterfield, and K. T. Shanley, 2013: Hidden error variance theory. Part II: An instrument that reveals hidden error variance distributions from ensemble forecasts and observations. Mon. Wea. Rev., 141, 14691483, doi:10.1175/MWR-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, doi:10.1256/qj.04.15.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, doi:10.5194/npg-20-669-2013.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 2532–2559, doi:10.1175/MWR-D-14-00354.1.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Gilbert, J. C., and C. Lemaréchal, 1989: Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Program., 45, 407435, doi:10.1007/BF01589113.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., J. Bojarova, and O. Vignes, 2014: A hybrid variational ensemble data assimilation for the High Resolution Limited Area Model (HIRLAM). Nonlinear Processes Geophys., 21, 303323, doi:10.5194/npg-21-303-2014.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter/3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015b: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, doi:10.1175/MWR-D-13-00350.1.

    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, doi:10.1175/MWR-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, doi:10.1175/MWR-D-14-00195.1.

    • Search Google Scholar
    • Export Citation
  • Ménétrier, B., T. Montmerle, Y. Michel, and L. Berre, 2015a: Linear filtering of sample covariances for ensemble-based data assimilation. Part I: Optimality criteria and application to variances filtering and covariances localization. Mon. Wea. Rev., 143, 16221643, doi:10.1175/MWR-D-14-00157.1.

    • Search Google Scholar
    • Export Citation
  • Ménétrier, B., T. Montmerle, Y. Michel, and L. Berre, 2015b: Linear filtering of sample covariances for ensemble-based data assimilation. Part II: Application to a convective-scale NWP model. Mon. Wea. Rev., 143, 16441664, doi:10.1175/MWR-D-14-00156.1.

    • Search Google Scholar
    • Export Citation
  • Morales, J. L., and J. Nocedal, 2011: Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization.” ACM Trans. Math. Software, 38, doi:10.1145/2049662.2049669.

    • Search Google Scholar
    • Export Citation
  • NOAA/National Centers for Environmental Prediction, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 13 November 2014, doi:10.5065/D6M043C6.

  • Wang, X., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently proposed ensemble 3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222227, doi:10.1175/MWR3282.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, doi:10.1175/2008MWR2444.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, doi:10.1175/2008MWR2445.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 535 87 2
PDF Downloads 234 72 1