Wavelet-Based Methodology for the Verification of Stochastic Submeso and Meso-Gamma Fluctuations

Astrid Suarez Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Astrid Suarez in
Current site
Google Scholar
PubMed
Close
,
David R. Stauffer Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by David R. Stauffer in
Current site
Google Scholar
PubMed
Close
, and
Brian J. Gaudet Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Brian J. Gaudet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Numerical weather prediction model skill is difficult to assess for transient, nonstationary, nondeterministic, or stochastic motions, like submeso and small meso-gamma motions. New approaches are needed to complement traditional methods and to quantify and evaluate the variability and the errors for these high-frequency, nondeterministic modes. A new verification technique that uses the wavelet transform as a bandpass filter to obtain scale-dependent frequency distributions of fluctuations is proposed for assessing model performance or accuracy. This new approach quantifies the nondeterministic variability independent of time while accounting for the time scale and amplitude of each fluctuation.

The efficacy of this wavelet decomposition technique for the verification of submeso and meso-gamma motions is first illustrated for a single case before the analysis is extended to six cases. The sensitivity of subkilometer grid-length Weather Research and Forecasting Model forecasts to the choice of three initialization strategies is assessed for both deterministic and stochastic motions using observations from a special network located at Rock Springs, Pennsylvania. It is demonstrated that the use of data assimilation in a preforecast period results in improved temperature and wind speed statistics for deterministic motions and for nondeterministic fluctuations with periods greater than ~20 min. As expected, there is little-to-no accuracy forecasting the occurrence of variability for temperature and wind in the smaller-submeso range and greater accuracy in the larger-submeso and meso-gamma ranges. Nonetheless, the model has some difficulty reproducing the observed variability with the correct amplitude. It underestimates the amplitude of observed fluctuations even for larger time scales, where better model performance could be expected.

Corresponding author address: Astrid Suarez, Department of Meteorology, The Pennsylvania State University, 623 Walker Building, University Park, PA 16802. E-mail: ais5396@psu.edu

Abstract

Numerical weather prediction model skill is difficult to assess for transient, nonstationary, nondeterministic, or stochastic motions, like submeso and small meso-gamma motions. New approaches are needed to complement traditional methods and to quantify and evaluate the variability and the errors for these high-frequency, nondeterministic modes. A new verification technique that uses the wavelet transform as a bandpass filter to obtain scale-dependent frequency distributions of fluctuations is proposed for assessing model performance or accuracy. This new approach quantifies the nondeterministic variability independent of time while accounting for the time scale and amplitude of each fluctuation.

The efficacy of this wavelet decomposition technique for the verification of submeso and meso-gamma motions is first illustrated for a single case before the analysis is extended to six cases. The sensitivity of subkilometer grid-length Weather Research and Forecasting Model forecasts to the choice of three initialization strategies is assessed for both deterministic and stochastic motions using observations from a special network located at Rock Springs, Pennsylvania. It is demonstrated that the use of data assimilation in a preforecast period results in improved temperature and wind speed statistics for deterministic motions and for nondeterministic fluctuations with periods greater than ~20 min. As expected, there is little-to-no accuracy forecasting the occurrence of variability for temperature and wind in the smaller-submeso range and greater accuracy in the larger-submeso and meso-gamma ranges. Nonetheless, the model has some difficulty reproducing the observed variability with the correct amplitude. It underestimates the amplitude of observed fluctuations even for larger time scales, where better model performance could be expected.

Corresponding author address: Astrid Suarez, Department of Meteorology, The Pennsylvania State University, 623 Walker Building, University Park, PA 16802. E-mail: ais5396@psu.edu
Save
  • BeluÅ¡ić, D., and I. Güttler, 2010: Can mesoscale models reproduce meandering motions? Quart. J. Roy. Meteor. Soc., 136, 553–565, doi:10.1002/qj.606.

    • Search Google Scholar
    • Export Citation
  • Briggs, W. M., and R. A. Levine, 1997: Wavelet and field forecast verification. Mon. Wea. Rev., 125, 1329–1341, doi:10.1175/1520-0493(1997)125<1329:WAFFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Casati, B., 2010: New developments in the intensity-scale technique within the spatial verification methods intercomparison project. Wea. Forecasting, 25, 113–143, doi:10.1175/2009WAF2222257.1.

    • Search Google Scholar
    • Export Citation
  • Casati, B., and L. J. Wilson, 2007: A new spatial-scale decomposition of the Brier score: Application to the verification of lighting probability forecast. Mon. Wea. Rev., 135, 3052–3069, doi:10.1175/MWR3442.1.

    • Search Google Scholar
    • Export Citation
  • Casati, B., G. Ross, and D. B. Stephenson, 2004: A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor. Appl., 11, 141–154, doi:10.1017/S1350482704001239.

    • Search Google Scholar
    • Export Citation
  • Casati, B., and Coauthors, 2008: Forecast verification: Current status and future directions. Meteor. Appl., 15, 3–18, doi:10.1002/met.52.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling of an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daubechies, I., 1991: Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series in Applied Mathematics, Vol. 61, Society for Industrial and Applied Mathematics, 357 pp., doi:10.1137/1.9781611970104.

  • De Moortel, I., S. A. Munday, and A. W. Hood, 2004: Wavelet analysis: The effect of varying basic wavelet parameter. Sol. Phys., 222, 203–228, doi:10.1023/B:SOLA.0000043578.01201.2d.

    • Search Google Scholar
    • Export Citation
  • Deng, A., and Coauthors, 2009: Update on WRF-ARW end-to-end multi-scale FDDA system. 10th WRF Users’ Workshop, Boulder, CO, NCAR, 1.9. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2009/abstracts/1-09.pdf.]

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farge, M., 1992: Wavelet transforms and their application to turbulence. Annu. Rev. Fluid Mech., 24, 395–457, doi:10.1146/annurev.fl.24.010192.002143.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287–302, doi:10.1016/S0034-4257(02)00078-0.

    • Search Google Scholar
    • Export Citation
  • Gaudet, B. J., N. L. Seaman, D. R. Stauffer, S. Richardson, L. Mahrt, and J. C. Wyngaard, 2008: Verification of WRF-predicted mesogamma-scale spectra in the SBL using a high-frequency filter decomposition. Ninth WRF Users’ Workshop, Boulder, CO, NCAR, P8.1. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/P8-01.pdf.]

  • Güttler, I., and D. BeluÅ¡ić, 2012: The nature of small-scale non-turbulent variability in a mesoscale model. Atmos. Sci. Lett., 13, 169–173, doi:10.1002/asl.382.

    • Search Google Scholar
    • Export Citation
  • Hagen-Zanker, A., and G. Lajoie, 2008: Neutral models of landscape change as benchmarks in the assessment of model performance. Landscape Urban Plann., 86, 284–296, doi:10.1016/j.landurbplan.2008.04.002.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoover, J., D. Stauffer, S. Richardson, L. Mahrt, B. Gaudet, and A. Suarez, 2015: Submeso motions within the stable boundary layer and their relationship to local indicators and synoptic regime in moderately complex terrain. J. Appl. Meteor. Climatol., 54, 352–369, doi:10.1175/JAMC-D-14-0128.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Jiang, X., and S. Mahadevan, 2011: Wavelet spectrum analysis approach to model validation of dynamic systems. Mech. Syst. Signal Processes, 25, 575–590, doi:10.1016/j.ymssp.2010.05.012.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kain, J. S., and J. M. Fritsch, 1998: Multiscale convective overturning in mesoscale convective systems: Reconciling observations, simulations, and theory. Mon. Wea. Rev., 126, 2254–2273, doi:10.1175/1520-0493(1998)126<2254:MCOIMC>2.0.CO;2.

  • Lau, K. M., and H. Y. Weng, 1995: Climate signal detection using wavelet transform: How to make a time series sing. Bull. Amer. Meteor. Soc., 76, 2391–2402, doi:10.1175/1520-0477(1995)076<2391:CSDUWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Livina, V. N., N. R. Edwards, S. Goswami, and T. M. Lenton, 2008: A wavelet-coefficient score for comparison of two-dimensional climatic-data fields. Quart. J. Roy. Meteor. Soc., 134, 941–955, doi:10.1002/qj.261.

    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., P. J. Hurley, and K. N. Rayner, 2009: Modelling near-surface low winds over land under stable conditions: Sensitivity test, flux–gradient relationships, and stability parameters. Bound.-Layer Meteor., 130, 249–274, doi:10.1007/s10546-008-9341-7.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., S. Richardson, N. Seaman, and D. Stauffer, 2012: Turbulence in the nocturnal boundary layer with light and variable winds. Quart. J. Roy. Meteor. Soc., 138, 1430–143, doi:10.1002/qj.1884.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., C. Thomas, S. Richardson, N. Seaman, D. Stauffer, and M. Zeeman, 2013: Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Bound.-Layer Meteor., 147, 179–19, doi:10.1007/s10546-012-9782-x.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and J. Kurths, 2004: Cross wavelet analysis: Significance testing and pitfalls. Nonlinear Processes Geophys., 11, 505–524, doi:10.5194/npg-11-505-2004.

    • Search Google Scholar
    • Export Citation
  • Mi, X., H. Ren, Z. Ouyang, W. Wei, and K. Ma, 2005: The use of the Mexican Hat and the Morlet wavelets for detection of ecological patterns. Plant Ecol., 179, 1–19, doi:10.1007/s11258-004-5089-4.

    • Search Google Scholar
    • Export Citation
  • Michaelides, S., 2008: Precipitation: Advances in Measurement, Estimation, and Prediction. Springer-Verlag, 540 pp.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validate correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nappo, C., 2013: An Introduction to Atmospheric Gravity Waves. Academic Press, 359 pp.

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulation from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. E., A. Deng, D. R. Stauffer, B. J. Gaudet, Y. Jia, S. Soong, and S. Tanrikulu, 2013: Application of the Weather Research and Forecasting Model for air quality modeling in the San Francisco Bay area. J. Appl. Meteor. Climatol., 52, 1953–1973, doi:10.1175/JAMC-D-12-0280.1.

    • Search Google Scholar
    • Export Citation
  • Salmond, J., 2005: Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer: Implications for the vertical mixing of ozone. Bound.-Layer Meteor., 114, 463–488, doi:10.1007/s10546-004-2422-3.

    • Search Google Scholar
    • Export Citation
  • Sandeepan, B. S., P. T. Rakesh, and R. Venkatesan, 2013: Numerical simulation of observed submesoscale plume meandering under nocturnal drainage flow. Atmos. Environ., 69, 29–36, doi:10.1016/j.atmosenv.2012.12.007.

    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., B. J. Gaudet, D. R. Stauffer, L. Mahrt, S. J. Richardson, J. R. Zielonka, and J. C. Wyngaard, 2012: Numerical prediction of the submesoscale flow in the nocturnal boundary layer over complex terrain. Mon. Wea. Rev., 140, 956–997, doi:10.1175/MWR-D-11-00061.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advance Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416–434, doi:10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suarez, A., and D. R. Stauffer, 2014: Effects of nonstationary wave structures on rotor development and evolution. 16th Conf. on Mountain Meteorology, San Diego, CA, Amer. Meteor. Soc., 11.2. [Available online at https://ams.confex.com/ams/16MountMet/webprogram/Paper251598.html.]

  • Sun, J., and Coauthors, 2015: Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys., in press, doi:10.1002/2015RG000487.

    • Search Google Scholar
    • Export Citation
  • Tabak, B. M., and M. A. Feitosa, 2010: Forecasting industrial production in Brazil: Evidence from a wavelet approach. Expert Syst. Appl., 37, 6345–6351, doi:10.1016/j.eswa.2010.02.086.

    • Search Google Scholar
    • Export Citation
  • Terradellas, E., G. Morales, J. Cuxart, and C. Yague, 2001: Wavelet method: Application to the study of the stable atmospheric boundary layer under non-stationary conditions. Dyn. Atmos. Oceans, 34, 225–244, doi:10.1016/S0377-0265(01)00069-0.

    • Search Google Scholar
    • Export Citation
  • Terradellas, E., M. R. Soler, E. Ferreres, and M. Bravo, 2005: Analysis of oscillations in the stable atmospheric boundary layer using wavelet methods. Bound.-Layer Meteor., 114, 489–518, doi:10.1007/s10546-004-1293-y.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, Z., S. Ahn, D. Chen, and J. Laval, 2011: Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations. Transport. Res., Part B: Methodol., 45, 372–384, doi:10.1016/j.trb.2010.08.002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 486 145 3
PDF Downloads 83 26 1