Sensitivity of Central Oklahoma Convection Forecasts to Upstream Potential Vorticity Anomalies during Two Strongly Forced Cases during MPEX

Ryan D. Torn Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Ryan D. Torn in
Current site
Google Scholar
PubMed
Close
and
Glen S. Romine National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Glen S. Romine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of upstream subsynoptic forecast errors on forecasts of two different central Oklahoma severe convection events (19 and 31 May 2013) characterized by strong synoptic forcing during the Mesoscale Predictability Experiment (MPEX) are evaluated by applying the ensemble-based sensitivity technique to WRF ensemble forecasts with explicit convection. During both cases, the forecast of the timing and intensity of convection over central Oklahoma is modulated by the southward extent of upstream midtropospheric potential vorticity anomalies that are moving through the base of a larger-scale upstream trough but pass by central Oklahoma prior to convective initiation. In addition, the convection forecasts are also sensitive to the position of lower-tropospheric boundaries, such that moving the boundaries in a manner that would lead to increased equivalent potential temperature over central Oklahoma prior to convective initiation leads to more precipitation. Statistical PV inversion and correlation calculations suggest that the midtropospheric PV and near-surface boundary sensitivities are not independent; the winds associated with the PV error can modulate the position of the lower-tropospheric boundary through advection in a manner consistent with the implied sensitivity. As a consequence, it appears that reducing the uncertainty in specific upstream subsynoptic features prior to convective initiation could improve subsequent forecasts of severe convection.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Ryan Torn, University at Albany, State University of New York, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: rtorn@albany.edu

Abstract

The role of upstream subsynoptic forecast errors on forecasts of two different central Oklahoma severe convection events (19 and 31 May 2013) characterized by strong synoptic forcing during the Mesoscale Predictability Experiment (MPEX) are evaluated by applying the ensemble-based sensitivity technique to WRF ensemble forecasts with explicit convection. During both cases, the forecast of the timing and intensity of convection over central Oklahoma is modulated by the southward extent of upstream midtropospheric potential vorticity anomalies that are moving through the base of a larger-scale upstream trough but pass by central Oklahoma prior to convective initiation. In addition, the convection forecasts are also sensitive to the position of lower-tropospheric boundaries, such that moving the boundaries in a manner that would lead to increased equivalent potential temperature over central Oklahoma prior to convective initiation leads to more precipitation. Statistical PV inversion and correlation calculations suggest that the midtropospheric PV and near-surface boundary sensitivities are not independent; the winds associated with the PV error can modulate the position of the lower-tropospheric boundary through advection in a manner consistent with the implied sensitivity. As a consequence, it appears that reducing the uncertainty in specific upstream subsynoptic features prior to convective initiation could improve subsequent forecasts of severe convection.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Ryan Torn, University at Albany, State University of New York, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: rtorn@albany.edu
Save
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint and ensemble sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, doi:10.1175/2007MWR1904.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community data assimilation facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, doi:10.1175/BAMS-D-11-00167.1.

    • Search Google Scholar
    • Export Citation
  • Bednarczyk, C. N., and B. C. Ancell, 2015: Ensemble sensitivity analysis applied to a southern Great Plains convective event. Mon. Wea. Rev., 143, 230249, doi:10.1175/MWR-D-13-00321.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2010a: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 10521081, doi:10.1175/2010WAF2222390.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2010b: Growth of spread in convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 25, 594612, doi:10.1175/2009WAF2222318.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 hazardous weather testbed experimental forecast spring experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, doi:10.1175/JAS3681.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., K. L. Elmore, J. S. Kain, S. J. Weiss, M. Xue, and M. L. Weisman, 2010: Evaluation of WRF Model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed spring experiment. Wea. Forecasting, 25, 408427, doi:10.1175/2009WAF2222258.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia Jr., P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF Model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, doi:10.1175/WAF-D-12-00103.1.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 24832501, doi:10.1175/MWR-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 316, doi:10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., 1997: The numerical prediction of thunderstorms: Challenges, potential benefits and results from real-time operational tests. WMO Bull., 46, 324336.

    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus, 2013: The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Wea. Forecasting, 28, 9941018, doi:10.1175/WAF-D-13-00005.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rodgers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gold, D. A., and J. W. Nielsen-Gammon, 2008a: Potential vorticity diagnosis of the severe convective regime. Part III: The Hesston tornado outbreak. Mon. Wea. Rev., 136, 15931611, doi:10.1175/2007MWR2092.1.

    • Search Google Scholar
    • Export Citation
  • Gold, D. A., and J. W. Nielsen-Gammon, 2008b: Potential vorticity diagnosis of the severe convective regime. Part IV: Comparison with modeling simulations of the Moore tornado outbreak. Mon. Wea. Rev., 136, 16121629, doi:10.1175/2007MWR2093.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and R. D. Torn, 2008: Ensemble synoptic analysis. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting, Meteor. Monogr., No. 33, Amer. Meteor. Soc., 147–161.

  • Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, and G. Leoncini, 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112133, doi:10.1175/MWR-D-12-00013.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schar, 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478, doi:10.1175/2007JAS2143.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., A. Walser, W. Langhans, and C. Schar, 2008: Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Quart. J. Roy. Meteor. Soc., 134, 889904, doi:10.1002/qj.252.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Johns, R. H., and C. A. I. Doswell, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, M. E. Levit, J. J. Baldwin, and D. R. Bright, 2006: Examination of convective allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL spring program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations for the first generation of operational convection allowing NWP: How much resolution is enough? Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., E. W. McCaul, and C. Cohen, 2009: Variability of updraft and downdraft characteristics in a large parameter space study of convective storms. Mon. Wea. Rev., 137, 15501561, doi:10.1175/2008MWR2703.1.

    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., E. W. McCaul, and C. Cohen, 2011: Sensitivities of simulated convective storms to environmental CAPE. Mon. Wea. Rev., 139, 35143532, doi:10.1175/2011MWR3631.1.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Shofield, R. P. Linfied, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102, 23 42923 465, doi:10.1029/97JD01569.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., J. Du, D.-L. Zhang, C. Cui, and Y. Liao, 2014: Ensemble-based analysis and sensitivity of mesoscale forecasts of a vortex over southwest China. Quart. J. Roy. Meteor. Soc., 140, 766782, doi:10.1002/qj.2200.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779798, doi:10.1002/qj.49711649402.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., C. Cohen, and C. Kirkpatrick, 2005: The sensitivity of simulated storm structure, intensity, and precipitation efficiency to environmental temperature. Mon. Wea. Rev., 133, 30153037, doi:10.1175/MWR3015.1.

    • Search Google Scholar
    • Export Citation
  • McNulty, R. P., 1995: Severe and convective weather: A central region forecasting challenge. Wea. Forecasting, 10, 187202, doi:10.1175/1520-0434(1995)010<0187:SACWAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, doi:10.1175/JAS-D-11-0315.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • National Climatic Data Center, 2015: Storm events database. National Climatic Data Center, accessed 23 February 2015. [Available online at http://www.ncdc.noaa.gov/stormevents/.]

  • Nielsen-Gammon, J. W., and D. A. Gold, 2008: Potential vorticity diagnosis of the severe convective regime. Part II: The impact of idealized PV anomalies. Mon. Wea. Rev., 136, 15821592, doi:10.1175/2007MWR2091.1.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., K. K. Droegenmeier, and R. P. Davies-Jone, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in vertical shear. Mon. Wea. Rev., 135, 34293455, doi:10.1175/MWR3463.1.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, and P. Romero, 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399429, doi:10.1175/1520-0434(2002)017<0399:SROTMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, doi:10.1175/MWR-D-12-00112.1.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and Coauthors, 2009: MAP D-PHASE: Real-time demonstration of weather forecast quality in the Alpine region. Bull. Amer. Meteor. Soc., 90, 13211336, doi:10.1175/2009BAMS2776.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., A. J. Clark, M. Xue, and F. Kong, 2013: Factors influencing the development and maintenance of nocturnal heavy-rain-producing convective systems in a storm-scale ensemble. Mon. Wea. Rev., 141, 27782801, doi:10.1175/MWR-D-12-00239.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, doi:10.1175/2009MWR2924.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, in press.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Benard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494, doi:10.1175/2008MWR2583.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Rep. NCAR/TN-475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, doi:10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 89523 915, doi:10.1029/97JD01864.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, doi:10.1175/2007MWR2132.1.

  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., G. S. Romine, D. A. Ahijevych, R. J. Trapp, R. S. Schumacher, M. C. Coniglio, and D. J. Stensrud, 2015: Mesoscale thermodynamic influences on convective initiation near a surface dryline in a convection-permitting ensemble. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Vandenberg, M. A., M. C. Coniglio, and A. J. Clark, 2014: Comparison of next-day convection-allowing forecasts of storm motion on 1- and 4-km grids. Wea. Forecasting, 29, 878893, doi:10.1175/WAF-D-14-00011.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, doi:10.1175/BAMS-86-2-205.

    • Search Google Scholar
    • Export Citation
  • Vie, B., O. Nuissier, and V. Ducrocq, 2011: Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139, 403423, doi:10.1175/2010MWR3487.1.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2008: On the predictability of mesoscale convective systems: Two-dimensional simulations. Wea. Forecasting, 23, 773785, doi:10.1175/2008WAF2007057.1.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2010: On the predictability of mesoscale convective systems: Three-dimensional simulations. Mon. Wea. Rev., 138, 863885, doi:10.1175/2009MWR2961.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00281.1, in press.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., D. J. Stensrud, D. C. Dowell, and N. Yussouf, 2012: Application of a WRF mesoscale data assimilation system to springtime severe weather events 2007–09. Mon. Wea. Rev., 140, 15391557, doi:10.1175/MWR-D-11-00106.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Xue, M., and W. J. Martin, 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149171, doi:10.1175/MWR3071.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 514 75 5
PDF Downloads 169 37 5