Phase-Specific Characteristics of Wintertime Clouds across a Midlatitude Mountain Range

S. W. Dorsi Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by S. W. Dorsi in
Current site
Google Scholar
PubMed
Close
,
M. D. Shupe Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by M. D. Shupe in
Current site
Google Scholar
PubMed
Close
,
P. O. G. Persson Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by P. O. G. Persson in
Current site
Google Scholar
PubMed
Close
,
D. E. Kingsmill Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by D. E. Kingsmill in
Current site
Google Scholar
PubMed
Close
, and
L. M. Avallone Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by L. M. Avallone in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations from a series of frontal and postfrontal storms during the Colorado Airborne Multiphase Cloud Study (CAMPS) are combined to show transitions in cloud dynamics and microphysical statistics over a mountain range. During 10 flights in 2010 and 2011, along-wind, across-ridge transects over the Colorado Park Range are performed to statistically characterize air motion and microphysical conditions and their variability. Composite transect statistics show median vertical winds to be mostly upward windward of the ridge axis, and that cloud water concentration (CWC) and ice-particle number concentration are greatest near the ridge. Mixed-phase clouds were found throughout the study area, but increase in frequency by 70% relative to other cloud types in the vicinity of the range. Compared to ice-only clouds, mixed-phase clouds are associated with greater near-ridge increases in CWC and preferentially occur in regions with greater vertical wind variability or updrafts. Strong leeside reductions in CWC, the abundance of mixed-phase clouds, and number concentration of ice particles reflect the dominance of precipitation and particle mass loss processes, rather than cloud growth processes, downwind from the topographic barrier. On days in which the air column stability does not support lee subsidence, this spatial configuration is markedly different, with both ice- and liquid-water-bearing clouds appearing near the ridgeline and extending downwind. A case study from 9 January 2011 highlights mixed-phase regions in trapped lee waves, and in a near-ridgetop layer with evidence of low-altitude ice particle growth.

Current affiliation: National Science Foundation, Arlington, Virginia.

Corresponding author address: S. W. Dorsi, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, 216 UCB, Boulder, CO 80309-0216. E-mail: samuel.dorsi@colorado.edu

Abstract

Observations from a series of frontal and postfrontal storms during the Colorado Airborne Multiphase Cloud Study (CAMPS) are combined to show transitions in cloud dynamics and microphysical statistics over a mountain range. During 10 flights in 2010 and 2011, along-wind, across-ridge transects over the Colorado Park Range are performed to statistically characterize air motion and microphysical conditions and their variability. Composite transect statistics show median vertical winds to be mostly upward windward of the ridge axis, and that cloud water concentration (CWC) and ice-particle number concentration are greatest near the ridge. Mixed-phase clouds were found throughout the study area, but increase in frequency by 70% relative to other cloud types in the vicinity of the range. Compared to ice-only clouds, mixed-phase clouds are associated with greater near-ridge increases in CWC and preferentially occur in regions with greater vertical wind variability or updrafts. Strong leeside reductions in CWC, the abundance of mixed-phase clouds, and number concentration of ice particles reflect the dominance of precipitation and particle mass loss processes, rather than cloud growth processes, downwind from the topographic barrier. On days in which the air column stability does not support lee subsidence, this spatial configuration is markedly different, with both ice- and liquid-water-bearing clouds appearing near the ridgeline and extending downwind. A case study from 9 January 2011 highlights mixed-phase regions in trapped lee waves, and in a near-ridgetop layer with evidence of low-altitude ice particle growth.

Current affiliation: National Science Foundation, Arlington, Virginia.

Corresponding author address: S. W. Dorsi, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, 216 UCB, Boulder, CO 80309-0216. E-mail: samuel.dorsi@colorado.edu
Save
  • Baumgardner, D., 1983: An analysis and comparison of five water droplet measuring instruments. J. Climate Appl. Meteor., 22, 891910, doi:10.1175/1520-0450(1983)022<0891:AAACOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Rodi, 1989: Laboratory and wind-tunnel evaluations of the Rosemount icing detector. J. Atmos. Oceanic Technol., 6, 971979, doi:10.1175/1520-0426(1989)006<0971:LAWTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59–60, 251264, doi:10.1016/S0169-8095(01)00119-3.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1949: The problem of artificial control of rainfall on the globe: I. General effects of ice-nuclei in clouds. Tellus, 1A, 3243, doi:10.1111/j.2153-3490.1949.tb01926.x.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., and M. A. Wetzel, 1997: Storm Peak Laboratory: A research, teaching, and service facility for the atmospheric sciences. Bull. Amer. Meteor. Soc., 78, 21152123, doi:10.1175/1520-0477(1997)078<2115:SPLART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, and D. L. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602, doi:10.1016/S1352-2310(99)00492-6.

    • Search Google Scholar
    • Export Citation
  • Bower, K. N., S. J. Moss, D. W. Johnson, T. W. Choularton, J. Latham, P. R. A. Brown, A. M. Blyth, and J. Cardwell, 1996: A parameterization of ice water content observed in frontal and convective clouds. Quart. J. Roy. Meteor. Soc., 122, 18151844, doi:10.1002/qj.49712253605.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., J. Niu, P. Yang, J. A. Kankiewicz, V. E. Larson, and T. H. V. Haar, 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteor. Climatol., 47, 24872495, doi:10.1175/2008JAMC1885.1.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and A. V. Korolev, 2001: Assessing the Rosemount Icing Detector with in situ measurements. J. Atmos. Oceanic Technol., 18, 515528, doi:10.1175/1520-0426(2001)018<0515:ATRIDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, R., S. Osborne, Z. Ulanowski, E. Hirst, P. H. Kaye, and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID-2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft. J. Atmos. Oceanic Technol., 27, 290303, doi:10.1175/2009JTECHA1282.1.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., A. G. Hallar, L. M. Avallone, and W. Engblom, 2007: Measurement of total water with a tunable diode laser hygrometer: Inlet analysis, calibration procedure, and ice water content determination. J. Atmos. Oceanic Technol., 24, 463475, doi:10.1175/JTECH1975.1.

    • Search Google Scholar
    • Export Citation
  • Dorsi, S. W., L. E. Kalnajs, D. W. Toohey, and L. M. Avallone, 2014: A fiber-coupled laser hygrometer for airborne total water measurement. Atmos. Meas. Tech., 7, 215223, doi:10.5194/amt-7-215-2014.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. Kaye, E. Hirst, and R. S. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed‐phase cloud at the 100 m scale. Quart. J. Roy. Meteor. Soc., 130, 18771904, doi:10.1256/qj.03.102.

    • Search Google Scholar
    • Export Citation
  • Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59, 17791804, doi:10.1175/1520-0469(2002)059<1779:OMSOMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 23442365, doi:10.1175/JAS-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, and A. Rodi, 1999: Ground-based FSSP and PVM measurements of liquid water content. J. Atmos. Oceanic Technol., 16, 11431149, doi:10.1175/1520-0426(1999)016<1143:GBFAPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., 2007: The National Elevation Dataset. Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd ed. D. Maune, Ed., American Society for Photogrammetry and Remote Sensing, 99–118.

  • Gordon, G. L., and J. D. Marwitz, 1984: An airborne comparison of three PMS probes. J. Atmos. Oceanic Technol., 1, 2227, doi:10.1175/1520-0426(1984)001<0022:AACOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and D. Morris, 1996: The sensitivity of climate simulations to the specification of mixed phase clouds. Climate Dyn., 12, 641651, doi:10.1007/BF00216271.

    • Search Google Scholar
    • Export Citation
  • Hallar, A. G., D. H. Lowenthal, G. Chirokova, and R. D. Borys, 2011: Persistent daily new particle formation at a mountain-top location. Atmos. Environ., 45, 41114115, doi:10.1016/j.atmosenv.2011.04.044.

    • Search Google Scholar
    • Export Citation
  • Heggli, M. F., and R. M. Rauber, 1988: The characteristics and evolution of supercooled water in wintertime storms over the Sierra Nevada: A summary of microwave radiometric measurements taken during the Sierra Cooperative Pilot Project. J. Appl. Meteor., 27, 9891015, doi:10.1175/1520-0450(1988)027<0989:TCAEOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hindman, E. E., 1986: Characteristics of supercooled liquid water in clouds at mountaintop sites in the Colorado Rockies. J. Climate Appl. Meteor., 25, 12711279, doi:10.1175/1520-0450(1986)025<1271:COSLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568596, doi:10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, doi:10.1256/003590002321042054.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. J. Illingworth, E. J. O’Connor, and J. Baptista, 2003a: Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar. Quart. J. Roy. Meteor. Soc., 129, 21172134, doi:10.1256/qj.01.209.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. Francis, H. Flentje, A. J. Illingworth, M. Quante, and J. Pelon, 2003b: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE’98. Quart. J. Roy. Meteor. Soc., 129, 20892116, doi:10.1256/rj.01.208.

    • Search Google Scholar
    • Export Citation
  • King, W., D. Parkin, and R. Handsworth, 1978: Hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, doi:10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, doi:10.1256/qj.01.203.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase, and ice clouds. J. Atmos. Sci., 63, 28652880, doi:10.1175/JAS3784.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686, doi:10.1175/2007JAS2355.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, and G. A. Isaac, 1998: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15, 708720, doi:10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 3965, doi:10.1256/qj.01.204.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. C. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D., E. Miller, and R. Friesen, 1991: A three-aircraft intercomparison of two types of air motion measurement systems. J. Atmos. Oceanic Technol., 8, 4150, doi:10.1175/1520-0426(1991)008<0041:ATAIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lowenthal, D. H., R. D. Borys, W. R. Cotton, S. M. Saleeby, S. A. Cohn, and W. O. J. Brown, 2011: The altitude of snow growth by riming and vapor deposition in mixed-phase orographic clouds. Atmos. Environ., 45, 519522, doi:10.1016/j.atmosenv.2010.09.061.

    • Search Google Scholar
    • Export Citation
  • Matejka, T. J., R. A. Houze Jr., and P. V. Hobbs, 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 2956, doi:10.1002/qj.49710644704.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, doi:10.1175/JAMC-D-12-0114.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., C. J. Seaman, T. H. Vonder Haar, and G. Liu, 2013: In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 269279, doi:10.1175/JAMC-D-11-0202.1.

    • Search Google Scholar
    • Export Citation
  • Pinto, J., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 20162038, doi:10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31, 324, doi:10.1175/1520-0450(1992)031<0003:MSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1986: The characteristics and distribution of cloud water over the mountains of Northern Colorado during wintertime storms. Part II: Spatial distribution and microphysical characteristics. J. Climate Appl. Meteor., 25, 489504, doi:10.1175/1520-0450(1986)025<0489:TCADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. O. Grant, D. Feng, and J. Snider, 1986: The characteristics and distribution of cloud water over the mountains of Northern Colorado during wintertime storms. Part I: Temporal variations. J. Climate Appl. Meteor., 25, 468488, doi:10.1175/1520-0450(1986)025<0468:TCADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reinking, R., and J. Snider, 2000: Influences of storm-embedded orographic gravity waves on cloud liquid water and precipitation. J. Appl. Meteor. Climatol., 39, 733759, doi:10.1175/1520-0450(2000)039<0733:IOSEOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., and G. Vali, 1987: Ice crystal production by mountain surfaces. J. Climate Appl. Meteor., 26, 11521168, doi:10.1175/1520-0450(1987)026<1152:ICPBMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2013: The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. J. Geophys. Res. Atmos., 118, 98199833, doi:10.1002/jgrd.50529.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2005: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado winter snowfall event. J. Appl. Meteor., 44, 19121929, doi:10.1175/JAM2312.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. H. Lowenthal, R. D. Borys, and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922, doi:10.1175/2008JAMC1989.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, and J. D. Fuller, 2011: The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado. J. Appl. Meteor. Climatol., 50, 604625, doi:10.1175/2010JAMC2594.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. H. Lowenthal, and J. Messina, 2013: Aerosol impacts on the microphysical growth processes of orographic snowfall. J. Appl. Meteor. Climatol., 52, 834852, doi:10.1175/JAMC-D-12-0193.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2011: Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteor. Climatol., 50, 645661, doi:10.1175/2010JAMC2468.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2008: A focus on mixed-phase clouds. Bull. Amer. Meteor. Soc., 89, 15491562, doi:10.1175/2008BAMS2378.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, doi:10.1364/OE.17.013576.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Watson, C. D., and T. P. Lane, 2012: Sensitivities of orographic precipitation to terrain geometry and upstream conditions in idealized simulations. J. Atmos. Sci., 69, 12081231, doi:10.1175/JAS-D-11-0198.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 117 8
PDF Downloads 189 36 6