Abstract
Tropical cyclone (TC) forecasts at
The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Aberson, S. D., 1998: Five-day tropical cyclone track forecasts in the North Atlantic basin. Wea. Forecasting, 13, 1005–1015, doi:10.1175/1520-0434(1998)013<1005:FDTCTF>2.0.CO;2.
Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 1283–1296, doi:10.1175/2009BAMS2618.1.
Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.
Bassill, N. P., 2014: Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization. Geophys. Res. Lett., 41, 3274–3281, doi:10.1002/2014GL059839.
Bassill, N. P., 2015: An analysis of the operational GFS simplified Arakawa Schubert parameterization within a WRF framework: A Hurricane Sandy (2012) long-term track forecast perspective. J. Geophys. Res. Atmos., 120, 378–398, doi:10.1002/2014JD022211.
Blake, E. S., 2014: 2013 Atlantic hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 9 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_atlc_2013.pdf.]
Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, 2013: Tropical cyclone report: Hurricane Sandy. Tech. Rep. AL182012, National Hurricane Center, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]
Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyer, and C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments. Geosci. Model Dev., 5, 1407–1423, doi:10.5194/gmd-5-1407-2012.
Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 9655–9676, doi:10.1175/JCLI-D-13-00075.1.
Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 3422–3448, doi:10.1175/2008JCLI2556.1.
Cangialosi, J. P., and J. L. Franklin, 2013: 2012 National Hurricane Center forecast verification report. Tech. Rep., NOAA/NWS/NCEP/National Hurricane Center, 79 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2012.pdf.]
Collins, N., and Coauthors, 2005: Design and implementation of components in the Earth System Modeling Framework. Int. J. High Perform. Comput. Appl., 19, 341–350, doi:10.1177/1094342005056120.
Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl., 26, 31–42, doi:10.1177/1094342011428141.
Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 1826–1841, doi:10.1175/2010WAF2222423.1.
Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 74–89, doi:10.1177/1094342011428142.
Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140–158, doi:10.1016/j.rse.2010.10.017.
Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37, 36–48, doi:10.1080/00031305.1983.10483087.
Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res., 104, 7841–7848, doi:10.1029/1998JC900109.
Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 3717–3743, doi:10.1175/2009MWR2946.1.
Fillion, L., H. L. Mitchell, H. Ritchie, and A. Staniforth, 1995: The impact of a digital filter finalization technique in a global data assimilation system. Tellus, 47A, 304–323, doi:10.1034/j.1600-0870.1995.t01-2-00002.x.
Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329–343, doi:10.1175/BAMS-D-12-00071.1.
Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.
Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688–704, doi:10.1175/2009MWR2976.1.
Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 3540–3551, doi:10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.
Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt, and M. N. Levy, 2014: The spectral element method (SEM) on variable-resolution grids: Evaluating grid sensitivity and resolution-aware numerical viscosity. Geosci. Model Dev., 7, 2803–2816, doi:10.5194/gmd-7-2803-2014.
Hall, T. M., and A. H. Sobel, 2013: On the impact angle of Hurricane Sandy’s New Jersey landfall. Geophys. Res. Lett., 40, 2312–2315, doi:10.1002/grl.50395.
Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283–306, doi:10.1175/MWR-D-11-00201.1.
Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Acadamic Press, 535 pp.
Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 1339–1360, doi:10.1175/BAMS-D-12-00121.1.
Jin, H., M. S. Peng, Y. Jin, and J. D. Doyle, 2014: An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Wea. Forecasting, 29, 252–270, doi:10.1175/WAF-D-13-00054.1.
Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 3155–3172, doi:10.1175/JCLI-D-11-00265.1.
Kimberlain, T. B., 2014: 2013 Eastern North Pacific hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 12 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_epac_2013.pdf.]
Knaff, J. A., M. DeMaria, C. R. Sampson, and J. M. Gross, 2003: Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 80–92, doi:10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2.
Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 1548–1550, doi:10.1126/science.285.5433.1548.
Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019–1034, doi:10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.
Magnusson, L., J.-R. Bidlot, S. T. K. Lang, A. Thorpe, N. Wedi, and M. Yamaguchi, 2014: Evaluation of medium-range forecasts for Hurricane Sandy. Mon. Wea. Rev., 142, 1962–1981, doi:10.1175/MWR-D-13-00228.1.
Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 3867–3893, doi:10.1175/JCLI-D-11-00346.1.
Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13.[Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.]
McDonald, A., 2003: Transparent boundary conditions for the shallow-water equations: Testing in a nested environment. Mon. Wea. Rev., 131, 698–705, doi:10.1175/1520-0493(2003)131<0698:TBCFTS>2.0.CO;2.
Mesinger, F., and K. Veljovic, 2013: Limited area NWP and regional climate modeling: A test of the relaxation vs Eta lateral boundary conditions. Meteor. Atmos. Phys., 119, 1–16, doi:10.1007/s00703-012-0217-5.
Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 3642–3659, doi:10.1175/2008JCLI2105.1.
NCEP Environmental Modeling Center, 2003: The GFS atmospheric model. NCEP Tech. Rep. Office Note 442, NCEP Global Climate and Weather Modeling Branch, Camp Springs, MD, 14 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf.]
Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, National Center for Atmospheric Research, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]
NOAA Science Advisory Board, 2006: Hurricane intensity research working group majority report. Tech. Rep., National Oceanic and Atmospheric Administration, 66 pp. [Available online at http://www.sab.noaa.gov/Reports/HIRWG_final73.pdf.]
Oleson, K., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, National Center for Atmospheric Research, 257 pp., doi:10.5065/D6FB50WZ.
Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 3449–3469, doi:10.1175/2008JCLI2557.1.
Pasch, R. J., 2014: 2012 Eastern North Pacific hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 10 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_epac_2012.pdf.]
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.
Reed, K. A., and C. Jablonowski, 2011: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689–710, doi:10.1175/2010MWR3488.1.
Reed, K. A., C. Jablonowski, and M. A. Taylor, 2012: Tropical cyclones in the spectral element configuration of the Community Atmosphere Model. Atmos. Sci. Lett., 13, 303–310, doi:10.1002/asl.399.
Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, doi:10.1175/2007JCLI1824.1.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105, doi:10.1175/MWR-D-11-00215.1.
Stewart, S., 2014: 2012 Atlantic hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 11 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_atlc_2012.pdf.]
Sun, Y., L. Yi, Z. Zhong, Y. Hu, and Y. Ha, 2013: Dependence of model convergence on horizontal resolution and convective parameterization in simulations of a tropical cyclone at gray-zone resolutions. J. Geophys. Res. Atmos., 118, 7715–7732, doi:10.1002/jgrd.50606.
Taylor, M. A., 2011: Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Vol. 80, Lecture Notes in Computational Science and Engineering, Springer, 357–380.
Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 5879–5895, doi:10.1016/j.jcp.2010.04.008.
Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92–108, doi:10.1006/jcph.1996.5554.
Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132–152, doi:10.1175/MWR-D-14-00086.1.
Trahan, S., and L. Sparling, 2012: An analysis of NCEP Tropical Cyclone Vitals and potential effects on forecasting models. Wea. Forecasting, 27, 744–756, doi:10.1175/WAF-D-11-00063.1.
Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 2599–2617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.
Wieringa, J., 1992: Updating the Davenport roughness classification. J. Wind Eng. Ind. Aerodyn., 41, 357–368, doi:10.1016/0167-6105(92)90434-C.
Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548–560, doi:10.1002/qj.1992.
Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805–828, doi:10.1002/2014MS000352.
Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014a: Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 1221–1239, doi:10.1175/MWR-D-13-00179.1.
Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich, 2014b: Aquaplanet experiments using CAM’s variable-resolution dynamical core. J. Climate, 27, 5481–5503, doi:10.1175/JCLI-D-14-00004.1.
Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 2777–2803, doi:10.1175/JCLI-D-14-00599.1.
Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33, 407–446, doi:10.1080/07055900.1995.9649539.
Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109–126, doi:10.1175/JAS3599.1.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 664 | 282 | 27 |
PDF Downloads | 393 | 138 | 8 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
Tropical cyclone (TC) forecasts at
The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Tropical cyclone (TC) forecasts at
The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Aberson, S. D., 1998: Five-day tropical cyclone track forecasts in the North Atlantic basin. Wea. Forecasting, 13, 1005–1015, doi:10.1175/1520-0434(1998)013<1005:FDTCTF>2.0.CO;2.
Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 1283–1296, doi:10.1175/2009BAMS2618.1.
Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.
Bassill, N. P., 2014: Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization. Geophys. Res. Lett., 41, 3274–3281, doi:10.1002/2014GL059839.
Bassill, N. P., 2015: An analysis of the operational GFS simplified Arakawa Schubert parameterization within a WRF framework: A Hurricane Sandy (2012) long-term track forecast perspective. J. Geophys. Res. Atmos., 120, 378–398, doi:10.1002/2014JD022211.
Blake, E. S., 2014: 2013 Atlantic hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 9 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_atlc_2013.pdf.]
Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, 2013: Tropical cyclone report: Hurricane Sandy. Tech. Rep. AL182012, National Hurricane Center, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]
Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyer, and C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments. Geosci. Model Dev., 5, 1407–1423, doi:10.5194/gmd-5-1407-2012.
Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 9655–9676, doi:10.1175/JCLI-D-13-00075.1.
Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 3422–3448, doi:10.1175/2008JCLI2556.1.
Cangialosi, J. P., and J. L. Franklin, 2013: 2012 National Hurricane Center forecast verification report. Tech. Rep., NOAA/NWS/NCEP/National Hurricane Center, 79 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2012.pdf.]
Collins, N., and Coauthors, 2005: Design and implementation of components in the Earth System Modeling Framework. Int. J. High Perform. Comput. Appl., 19, 341–350, doi:10.1177/1094342005056120.
Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl., 26, 31–42, doi:10.1177/1094342011428141.
Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 1826–1841, doi:10.1175/2010WAF2222423.1.
Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 74–89, doi:10.1177/1094342011428142.
Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140–158, doi:10.1016/j.rse.2010.10.017.
Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37, 36–48, doi:10.1080/00031305.1983.10483087.
Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res., 104, 7841–7848, doi:10.1029/1998JC900109.
Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 3717–3743, doi:10.1175/2009MWR2946.1.
Fillion, L., H. L. Mitchell, H. Ritchie, and A. Staniforth, 1995: The impact of a digital filter finalization technique in a global data assimilation system. Tellus, 47A, 304–323, doi:10.1034/j.1600-0870.1995.t01-2-00002.x.
Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329–343, doi:10.1175/BAMS-D-12-00071.1.
Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.
Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688–704, doi:10.1175/2009MWR2976.1.
Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 3540–3551, doi:10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.
Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt, and M. N. Levy, 2014: The spectral element method (SEM) on variable-resolution grids: Evaluating grid sensitivity and resolution-aware numerical viscosity. Geosci. Model Dev., 7, 2803–2816, doi:10.5194/gmd-7-2803-2014.
Hall, T. M., and A. H. Sobel, 2013: On the impact angle of Hurricane Sandy’s New Jersey landfall. Geophys. Res. Lett., 40, 2312–2315, doi:10.1002/grl.50395.
Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283–306, doi:10.1175/MWR-D-11-00201.1.
Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Acadamic Press, 535 pp.
Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 1339–1360, doi:10.1175/BAMS-D-12-00121.1.
Jin, H., M. S. Peng, Y. Jin, and J. D. Doyle, 2014: An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Wea. Forecasting, 29, 252–270, doi:10.1175/WAF-D-13-00054.1.
Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 3155–3172, doi:10.1175/JCLI-D-11-00265.1.
Kimberlain, T. B., 2014: 2013 Eastern North Pacific hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 12 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_epac_2013.pdf.]
Knaff, J. A., M. DeMaria, C. R. Sampson, and J. M. Gross, 2003: Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 80–92, doi:10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2.
Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 1548–1550, doi:10.1126/science.285.5433.1548.
Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019–1034, doi:10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.
Magnusson, L., J.-R. Bidlot, S. T. K. Lang, A. Thorpe, N. Wedi, and M. Yamaguchi, 2014: Evaluation of medium-range forecasts for Hurricane Sandy. Mon. Wea. Rev., 142, 1962–1981, doi:10.1175/MWR-D-13-00228.1.
Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 3867–3893, doi:10.1175/JCLI-D-11-00346.1.
Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13.[Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.]
McDonald, A., 2003: Transparent boundary conditions for the shallow-water equations: Testing in a nested environment. Mon. Wea. Rev., 131, 698–705, doi:10.1175/1520-0493(2003)131<0698:TBCFTS>2.0.CO;2.
Mesinger, F., and K. Veljovic, 2013: Limited area NWP and regional climate modeling: A test of the relaxation vs Eta lateral boundary conditions. Meteor. Atmos. Phys., 119, 1–16, doi:10.1007/s00703-012-0217-5.
Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 3642–3659, doi:10.1175/2008JCLI2105.1.
NCEP Environmental Modeling Center, 2003: The GFS atmospheric model. NCEP Tech. Rep. Office Note 442, NCEP Global Climate and Weather Modeling Branch, Camp Springs, MD, 14 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf.]
Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, National Center for Atmospheric Research, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]
NOAA Science Advisory Board, 2006: Hurricane intensity research working group majority report. Tech. Rep., National Oceanic and Atmospheric Administration, 66 pp. [Available online at http://www.sab.noaa.gov/Reports/HIRWG_final73.pdf.]
Oleson, K., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, National Center for Atmospheric Research, 257 pp., doi:10.5065/D6FB50WZ.
Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 3449–3469, doi:10.1175/2008JCLI2557.1.
Pasch, R. J., 2014: 2012 Eastern North Pacific hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 10 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_epac_2012.pdf.]
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.
Reed, K. A., and C. Jablonowski, 2011: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689–710, doi:10.1175/2010MWR3488.1.
Reed, K. A., C. Jablonowski, and M. A. Taylor, 2012: Tropical cyclones in the spectral element configuration of the Community Atmosphere Model. Atmos. Sci. Lett., 13, 303–310, doi:10.1002/asl.399.
Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, doi:10.1175/2007JCLI1824.1.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105, doi:10.1175/MWR-D-11-00215.1.
Stewart, S., 2014: 2012 Atlantic hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 11 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_atlc_2012.pdf.]
Sun, Y., L. Yi, Z. Zhong, Y. Hu, and Y. Ha, 2013: Dependence of model convergence on horizontal resolution and convective parameterization in simulations of a tropical cyclone at gray-zone resolutions. J. Geophys. Res. Atmos., 118, 7715–7732, doi:10.1002/jgrd.50606.
Taylor, M. A., 2011: Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Vol. 80, Lecture Notes in Computational Science and Engineering, Springer, 357–380.
Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 5879–5895, doi:10.1016/j.jcp.2010.04.008.
Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92–108, doi:10.1006/jcph.1996.5554.
Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132–152, doi:10.1175/MWR-D-14-00086.1.
Trahan, S., and L. Sparling, 2012: An analysis of NCEP Tropical Cyclone Vitals and potential effects on forecasting models. Wea. Forecasting, 27, 744–756, doi:10.1175/WAF-D-11-00063.1.
Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 2599–2617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.
Wieringa, J., 1992: Updating the Davenport roughness classification. J. Wind Eng. Ind. Aerodyn., 41, 357–368, doi:10.1016/0167-6105(92)90434-C.
Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548–560, doi:10.1002/qj.1992.
Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805–828, doi:10.1002/2014MS000352.
Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014a: Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 1221–1239, doi:10.1175/MWR-D-13-00179.1.
Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich, 2014b: Aquaplanet experiments using CAM’s variable-resolution dynamical core. J. Climate, 27, 5481–5503, doi:10.1175/JCLI-D-14-00004.1.
Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 2777–2803, doi:10.1175/JCLI-D-14-00599.1.
Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33, 407–446, doi:10.1080/07055900.1995.9649539.
Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109–126, doi:10.1175/JAS3599.1.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 664 | 282 | 27 |
PDF Downloads | 393 | 138 | 8 |