Experimental Tropical Cyclone Forecasts Using a Variable-Resolution Global Model

Colin M. Zarzycki National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Colin M. Zarzycki in
Current site
Google Scholar
PubMed
Close
and
Christiane Jablonowski Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Christiane Jablonowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclone (TC) forecasts at 14-km horizontal resolution (0.125°) are completed using variable-resolution (V-R) grids within the Community Atmosphere Model (CAM). Forecasts are integrated twice daily from 1 August to 31 October for both 2012 and 2013, with a high-resolution nest centered over the North Atlantic and eastern Pacific Ocean basins. Using the CAM version 5 (CAM5) physical parameterization package, regional refinement is shown to significantly increase TC track forecast skill relative to unrefined grids (55 km, 0.5°). For typical TC forecast integration periods (approximately 1 week), V-R forecasts are able to nearly identically reproduce the flow field of a globally uniform high-resolution forecast. Simulated intensity is generally too strong for forecasts beyond 72 h. This intensity bias is robust regardless of whether the forecast is forced with observed or climatological sea surface temperatures and is not significantly mitigated in a suite of sensitivity simulations aimed at investigating the impact of model time step and CAM’s deep convection parameterization. Replacing components of the default physics with Cloud Layers Unified by Binormals (CLUBB) produces a statistically significant improvement in forecast intensity at longer lead times, although significant structural differences in forecasted TCs exist. CAM forecasts the recurvature of Hurricane Sandy into the northeastern United States 60 h earlier than the Global Forecast System (GFS) model using identical initial conditions, demonstrating the sensitivity of TC forecasts to model configuration. Computational costs associated with V-R simulations are dramatically decreased relative to globally uniform high-resolution simulations, demonstrating that variable-resolution techniques are a promising tool for future numerical weather prediction applications.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Colin M. Zarzycki, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: zarzycki@ucar.edu

Abstract

Tropical cyclone (TC) forecasts at 14-km horizontal resolution (0.125°) are completed using variable-resolution (V-R) grids within the Community Atmosphere Model (CAM). Forecasts are integrated twice daily from 1 August to 31 October for both 2012 and 2013, with a high-resolution nest centered over the North Atlantic and eastern Pacific Ocean basins. Using the CAM version 5 (CAM5) physical parameterization package, regional refinement is shown to significantly increase TC track forecast skill relative to unrefined grids (55 km, 0.5°). For typical TC forecast integration periods (approximately 1 week), V-R forecasts are able to nearly identically reproduce the flow field of a globally uniform high-resolution forecast. Simulated intensity is generally too strong for forecasts beyond 72 h. This intensity bias is robust regardless of whether the forecast is forced with observed or climatological sea surface temperatures and is not significantly mitigated in a suite of sensitivity simulations aimed at investigating the impact of model time step and CAM’s deep convection parameterization. Replacing components of the default physics with Cloud Layers Unified by Binormals (CLUBB) produces a statistically significant improvement in forecast intensity at longer lead times, although significant structural differences in forecasted TCs exist. CAM forecasts the recurvature of Hurricane Sandy into the northeastern United States 60 h earlier than the Global Forecast System (GFS) model using identical initial conditions, demonstrating the sensitivity of TC forecasts to model configuration. Computational costs associated with V-R simulations are dramatically decreased relative to globally uniform high-resolution simulations, demonstrating that variable-resolution techniques are a promising tool for future numerical weather prediction applications.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Colin M. Zarzycki, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: zarzycki@ucar.edu
Save
  • Aberson, S. D., 1998: Five-day tropical cyclone track forecasts in the North Atlantic basin. Wea. Forecasting, 13, 10051015, doi:10.1175/1520-0434(1998)013<1005:FDTCTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bassill, N. P., 2014: Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization. Geophys. Res. Lett., 41, 32743281, doi:10.1002/2014GL059839.

    • Search Google Scholar
    • Export Citation
  • Bassill, N. P., 2015: An analysis of the operational GFS simplified Arakawa Schubert parameterization within a WRF framework: A Hurricane Sandy (2012) long-term track forecast perspective. J. Geophys. Res. Atmos., 120, 378398, doi:10.1002/2014JD022211.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., 2014: 2013 Atlantic hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 9 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_atlc_2013.pdf.]

  • Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, 2013: Tropical cyclone report: Hurricane Sandy. Tech. Rep. AL182012, National Hurricane Center, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]

  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyer, and C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments. Geosci. Model Dev., 5, 14071423, doi:10.5194/gmd-5-1407-2012.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 96559676, doi:10.1175/JCLI-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. L. Franklin, 2013: 2012 National Hurricane Center forecast verification report. Tech. Rep., NOAA/NWS/NCEP/National Hurricane Center, 79 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2012.pdf.]

  • Collins, N., and Coauthors, 2005: Design and implementation of components in the Earth System Modeling Framework. Int. J. High Perform. Comput. Appl., 19, 341350, doi:10.1177/1094342005056120.

    • Search Google Scholar
    • Export Citation
  • Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl., 26, 3142, doi:10.1177/1094342011428141.

    • Search Google Scholar
    • Export Citation
  • Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 18261841, doi:10.1175/2010WAF2222423.1.

    • Search Google Scholar
    • Export Citation
  • Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, doi:10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37, 3648, doi:10.1080/00031305.1983.10483087.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res., 104, 78417848, doi:10.1029/1998JC900109.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173743, doi:10.1175/2009MWR2946.1.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., H. L. Mitchell, H. Ritchie, and A. Staniforth, 1995: The impact of a digital filter finalization technique in a global data assimilation system. Tellus, 47A, 304323, doi:10.1034/j.1600-0870.1995.t01-2-00002.x.

    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, doi:10.1175/2009MWR2976.1.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, doi:10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt, and M. N. Levy, 2014: The spectral element method (SEM) on variable-resolution grids: Evaluating grid sensitivity and resolution-aware numerical viscosity. Geosci. Model Dev., 7, 28032816, doi:10.5194/gmd-7-2803-2014.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and A. H. Sobel, 2013: On the impact angle of Hurricane Sandy’s New Jersey landfall. Geophys. Res. Lett., 40, 23122315, doi:10.1002/grl.50395.

    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, doi:10.1175/MWR-D-11-00201.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Acadamic Press, 535 pp.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jin, H., M. S. Peng, Y. Jin, and J. D. Doyle, 2014: An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Wea. Forecasting, 29, 252270, doi:10.1175/WAF-D-13-00054.1.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., 2014: 2013 Eastern North Pacific hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 12 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_epac_2013.pdf.]

  • Knaff, J. A., M. DeMaria, C. R. Sampson, and J. M. Gross, 2003: Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 8092, doi:10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 15481550, doi:10.1126/science.285.5433.1548.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, doi:10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., J.-R. Bidlot, S. T. K. Lang, A. Thorpe, N. Wedi, and M. Yamaguchi, 2014: Evaluation of medium-range forecasts for Hurricane Sandy. Mon. Wea. Rev., 142, 19621981, doi:10.1175/MWR-D-13-00228.1.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, doi:10.1175/JCLI-D-11-00346.1.

    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13.[Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.]

  • McDonald, A., 2003: Transparent boundary conditions for the shallow-water equations: Testing in a nested environment. Mon. Wea. Rev., 131, 698705, doi:10.1175/1520-0493(2003)131<0698:TBCFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and K. Veljovic, 2013: Limited area NWP and regional climate modeling: A test of the relaxation vs Eta lateral boundary conditions. Meteor. Atmos. Phys., 119, 116, doi:10.1007/s00703-012-0217-5.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • NCEP Environmental Modeling Center, 2003: The GFS atmospheric model. NCEP Tech. Rep. Office Note 442, NCEP Global Climate and Weather Modeling Branch, Camp Springs, MD, 14 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf.]

  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, National Center for Atmospheric Research, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • NOAA Science Advisory Board, 2006: Hurricane intensity research working group majority report. Tech. Rep., National Oceanic and Atmospheric Administration, 66 pp. [Available online at http://www.sab.noaa.gov/Reports/HIRWG_final73.pdf.]

  • Oleson, K., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, National Center for Atmospheric Research, 257 pp., doi:10.5065/D6FB50WZ.

  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., 2014: 2012 Eastern North Pacific hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 10 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_epac_2012.pdf.]

  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689710, doi:10.1175/2010MWR3488.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., C. Jablonowski, and M. A. Taylor, 2012: Tropical cyclones in the spectral element configuration of the Community Atmosphere Model. Atmos. Sci. Lett., 13, 303310, doi:10.1002/asl.399.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, S., 2014: 2012 Atlantic hurricane season. National Hurricane Center Annual Summary, Tech. Rep., National Hurricane Center, 11 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/summary_atlc_2012.pdf.]

  • Sun, Y., L. Yi, Z. Zhong, Y. Hu, and Y. Ha, 2013: Dependence of model convergence on horizontal resolution and convective parameterization in simulations of a tropical cyclone at gray-zone resolutions. J. Geophys. Res. Atmos., 118, 77157732, doi:10.1002/jgrd.50606.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., 2011: Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Vol. 80, Lecture Notes in Computational Science and Engineering, Springer, 357–380.

  • Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 58795895, doi:10.1016/j.jcp.2010.04.008.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92108, doi:10.1006/jcph.1996.5554.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132152, doi:10.1175/MWR-D-14-00086.1.

    • Search Google Scholar
    • Export Citation
  • Trahan, S., and L. Sparling, 2012: An analysis of NCEP Tropical Cyclone Vitals and potential effects on forecasting models. Wea. Forecasting, 27, 744756, doi:10.1175/WAF-D-11-00063.1.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1992: Updating the Davenport roughness classification. J. Wind Eng. Ind. Aerodyn., 41, 357368, doi:10.1016/0167-6105(92)90434-C.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548560, doi:10.1002/qj.1992.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805828, doi:10.1002/2014MS000352.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014a: Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 12211239, doi:10.1175/MWR-D-13-00179.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich, 2014b: Aquaplanet experiments using CAM’s variable-resolution dynamical core. J. Climate, 27, 54815503, doi:10.1175/JCLI-D-14-00004.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 27772803, doi:10.1175/JCLI-D-14-00599.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109126, doi:10.1175/JAS3599.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 664 282 27
PDF Downloads 393 138 8