Impact of Subgrid-Scale Orography on Equatorial Angular Momentum Budget and the Cold Surges in a General Circulation Model

Sylvain Mailler Laboratoire de Météorologie Dynamique (CNRS), UMR 8539, École Normale Supérieure, Paris, and École Nationale des Ponts et Chaussées, Cité Descartes, Champs-sur-Marne, France

Search for other papers by Sylvain Mailler in
Current site
Google Scholar
PubMed
Close
and
François Lott Laboratoire de Météorologie Dynamique (CNRS), UMR 8539, École Normale Supérieure, Paris, France

Search for other papers by François Lott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dynamical relations between equatorial atmospheric angular momentum (EAAM), equatorial mountain torques, and cold surges are analyzed in a general circulation model (GCM). First, the authors show that the global EAAM budget is well closed in the GCM, much better than in the NCEP–NCAR reanalysis. They then confirm that the equatorial torques due to the Tibetan Plateau, the Rockies, and the Andes are well related to the cold surges developing over East Asia, North America, and South America, respectively. For all these mountains, a peak in the equatorial mountain torque components precedes by few days the development of a cold surge, confirming that the cold surge’s “preconditioning” is dynamically driven by large-scale mountains.

The authors also analyze the contribution of the subgrid-scale orography (SSO) parameterizations and find that they contribute substantially to the torques. In experiments where these parameterizations are almost entirely reduced over a given massif, the authors find that the explicit pressure torques produced by that massif largely compensate the reduction in the parameterized torques. On the one hand, this proves that the explicitly resolved equatorial mountain torques are effective dynamical drivers of the flow dynamics, since they are enhanced when a parameterized torque is reduced. On the other hand, this shows that the cold surges can be captured in GCMs, provided that the synoptic conditions prior to their onset are realistic. The compensation between torques is nevertheless not complete and some weakening of the cold surges is found when the parameterized mountain torques are reduced.

Corresponding author address: Sylvain Mailler, Ecole Nationale des Ponts et Chaussées, Laboratoire de Météorologie Dynamique, Route de Saclay, Palaiseau CEDEX, 91128 France. E-mail: sylvain.mailler@lmd.polytechnique.fr

Abstract

The dynamical relations between equatorial atmospheric angular momentum (EAAM), equatorial mountain torques, and cold surges are analyzed in a general circulation model (GCM). First, the authors show that the global EAAM budget is well closed in the GCM, much better than in the NCEP–NCAR reanalysis. They then confirm that the equatorial torques due to the Tibetan Plateau, the Rockies, and the Andes are well related to the cold surges developing over East Asia, North America, and South America, respectively. For all these mountains, a peak in the equatorial mountain torque components precedes by few days the development of a cold surge, confirming that the cold surge’s “preconditioning” is dynamically driven by large-scale mountains.

The authors also analyze the contribution of the subgrid-scale orography (SSO) parameterizations and find that they contribute substantially to the torques. In experiments where these parameterizations are almost entirely reduced over a given massif, the authors find that the explicit pressure torques produced by that massif largely compensate the reduction in the parameterized torques. On the one hand, this proves that the explicitly resolved equatorial mountain torques are effective dynamical drivers of the flow dynamics, since they are enhanced when a parameterized torque is reduced. On the other hand, this shows that the cold surges can be captured in GCMs, provided that the synoptic conditions prior to their onset are realistic. The compensation between torques is nevertheless not complete and some weakening of the cold surges is found when the parameterized mountain torques are reduced.

Corresponding author address: Sylvain Mailler, Ecole Nationale des Ponts et Chaussées, Laboratoire de Météorologie Dynamique, Route de Saclay, Palaiseau CEDEX, 91128 France. E-mail: sylvain.mailler@lmd.polytechnique.fr
Save
  • Aebischer, U., and C. Schar, 1998: Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55, 186207, doi:10.1175/1520-0469(1998)055<0186:LLPVAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Belcher, S., and N. Wood, 1996: Form and wave drag due to stably stratified turbulent flow over low ridges. Quart. J. Roy. Meteor. Soc., 122, 863902, doi:10.1002/qj.49712253205.

    • Search Google Scholar
    • Export Citation
  • Bell, M. J., 1994: Oscillations in the equatorial components of the atmosphere’s angular momentum and torques on the earth’s bulge. Quart. J. Roy. Meteor. Soc., 120, 195213, doi: 10.1002/qj.49712051512.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., M.-C. Yen, W.-R. Huang, and W. A. Gallus, 2002: An East Asian cold surge: Case study. Mon. Wea. Rev., 130, 22712290, doi:10.1175/1520-0493(2002)130<2271:AEACSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. Mass, 1995: The structure evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610, doi:10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., G. N. Kiladis, and P. J. Webster, 1999: The horizontal and vertical structure of East Asian winter monsoon pressure surges. Quart. J. Roy. Meteor. Soc., 125, 2954, doi:10.1002/qj.49712555304.

    • Search Google Scholar
    • Export Citation
  • De Viron, O., G. Schwarzbaum, F. Lott, and V. Dehant, 2005: Diurnal and subdiurnal effects of the atmosphere on the Earth rotation and geocenter motion. J. Geophys. Res., 110, B11404, doi:10.1029/2005JB003761.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Egger, J., and K.-P. Hoinka, 2002: Equatorial components of global atmospheric angular momentum: Covariance functions. Quart. J. Roy. Meteor. Soc., 128, 11371157, doi:10.1256/003590002320373238.

    • Search Google Scholar
    • Export Citation
  • Egger, J., K. Weickmann, and K.-P. Hoinka, 2007: Angular momentum in the global atmospheric circulation. Rev. Geophys., 45, RG4007, doi:10.1029/2006RG000213.

    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., J. Ronchail, M. Lengaigne, N. Quispe, Y. Silva, M. L. Bettolli, G. Avalos, and A. Llacza, 2013: Revisiting wintertime cold air intrusions at the east of the Andes: Propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Climate Dyn., 41, 19832002, doi:10.1007/s00382-012-1639-y.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics associated with equatorial atmospheric angular momentum in an aquaplanet GCM. J. Atmos. Sci., 60, 18221834, doi:10.1175/1520-0469(2003)060<1822:TDAWEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2006: Dynamical processes of equatorial atmospheric angular momentum. J. Atmos. Sci., 63, 565581, doi:10.1175/JAS3586.1.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Cold air incursions over subtropical and tropical South America: A numerical case study. Mon. Wea. Rev., 127, 28232853, doi:10.1175/1520-0493(1999)127<2823:CAIOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev., 128, 25442559, doi:10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2001: Subtropical cold surges: Regional aspects and global distribution. Int. J. Climatol., 21, 11811197, doi:10.1002/joc.687.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58 (3), 175183.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., E. Källén, M. Tjernström, and H. Körnich, 2007: Atmospheric mass-transport inconsistencies in the ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 133, 673680, doi:10.1002/qj.35.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., 1992: Conservation du moment cinetique dans le modele de circulation generale du LMD. Note Interne LMD 175, Laboratoire de Météorologie Dynamique du CNRS, 17 pp. [Available online at http://lmdz.lmd.jussieu.fr/developpeurs/notes-techniques/ressources/conserv.pdf.]

  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, doi:10.1007/s00382-006-0158-0.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and J. M. Wallace, 1985: Vertical structure of wintertime teleconnection patterns. J. Atmos. Sci., 42, 16931710, doi:10.1175/1520-0469(1985)042<1693:VSOWTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., and C.-H. Ho, 2005: Changes in occurrence of cold surges over east Asia in association with arctic oscillation. Geophys. Res. Lett., 32, L14704, doi:10.1029/2005GL023024.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in east Asia. J. Geophys. Res., 110, D11104, doi:10.1029/2004JD005408.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 1996: Relationships between the intensity of cold-air outbreaks and the evolution of synoptic and planetary-scale features over North America. Mon. Wea. Rev., 124, 10671083, doi:10.1175/1520-0493(1996)124<1067:RBTIOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., J. T. Bacmeister, T. Dubos, S. Lebonnois, and M. A. Taylor, 2014: Held-Suarez simulations with the Community Atmosphere Model Spectral Element (CAM-SE) dynamical core: A global axial angular momentum analysis using Eulerian and floating Lagrangian vertical coordinates. J. Adv. Model. Earth Syst., 6, 129140, doi:10.1002/2013MS000268.

    • Search Google Scholar
    • Export Citation
  • Lebonnois, S., F. Hourdin, V. Eymet, A. Crespin, R. Fournier, and F. Forget, 2010: Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res., 115, E06006, doi:10.1029/2009JE003458.

    • Search Google Scholar
    • Export Citation
  • Li, W., and R. Fu, 2006: Influence of cold air intrusions on the wet season onset over Amazonia. J. Climate, 19, 257275, doi:10.1175/JCLI3614.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F., 1995: Comparison between the orographic response of the ECMWF model and the PYREX 1990 data. Quart. J. Roy. Meteor. Soc., 121, 13231348, doi:10.1002/qj.49712152607.

    • Search Google Scholar
    • Export Citation
  • Lott, F., 1999: Alleviation of stationary biases through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon. Wea. Rev., 127, 788801, doi:10.1175/1520-0493(1999)127<0788:AOSBIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new sub-grid scale orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • Lott, F., A. W. Robertson, and M. Ghil, 2001: Mountain torques and atmospheric oscillations. Geophys. Res. Lett., 28, 12071210, doi:10.1029/2000GL011829.

    • Search Google Scholar
    • Export Citation
  • Lott, F., L. Goudard, and A. Martin, 2005: Links between the mountain torque and the Arctic Oscillation in the Laboratoire de Météorologie Dynamique (LMDz), general circulation model. J. Geophys. Res., 110, D22107, doi:10.1029/2005JD006073.

    • Search Google Scholar
    • Export Citation
  • Lott, F., O. de Viron, P. Viterbo, and F. Vial, 2008: Axial atmospheric angular momentum budget at diurnal and subdiurnal periodicities. J. Atmos. Sci., 65, 156171, doi:10.1175/2007JAS2178.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F., J. Kuttippurath, and F. Vial, 2009: A climatology of the gravest waves in the equatorial lower and middle stratosphere: Method and comparison between the ERA-40 re-analysis and the LMDZ-GCM. J. Atmos. Sci., 66, 13271346, doi:10.1175/2008JAS2880.1.

    • Search Google Scholar
    • Export Citation
  • Mailler, S., and F. Lott, 2009: Dynamical influence of the Tibetan Plateau on winter monsoon convection over Southeast Asia. Geophys. Res. Lett., 36, L06708, doi:10.1029/2008GL036952.

    • Search Google Scholar
    • Export Citation
  • Mailler, S., and F. Lott, 2010: Equatorial mountain torques and cold surge preconditionning. J. Atmos. Sci., 67, 21012120, doi:10.1175/2010JAS3382.1.

    • Search Google Scholar
    • Export Citation
  • Marengo, J., C. A. Nobre, and A. D. Culf, 1997: Climatic impacts of “friagens” in forested and deforested areas of the Amazon Basin. J. Appl. Meteor., 36, 15531566, doi:10.1175/1520-0450(1997)036<1553:CIOFIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marengo, J., T. Ambrizzi, G. Kiladis, and B. Liebmann, 2002: Upper-air wave trains over the Pacific Ocean and wintertime cold surges in tropical-subtropical South America leading to freezes in southern and southeastern brazil. Theor. Appl. Climatol., 73, 223242, doi:10.1007/s00704-001-0669-x.

    • Search Google Scholar
    • Export Citation
  • Martin, A., and F. Lott, 2007: Synoptic responses to mountain gravity waves encoutering directional critical levels. J. Atmos. Sci., 64, 828848, doi:10.1175/JAS3873.1.

    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, S. Yang, and J.-H. Jeong, 2010: Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009–2010. J. Geophys. Res., 115, D23122, doi:10.1029/2010JD014794.

    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 6883, doi:10.1175/2010JCLI3529.1.

    • Search Google Scholar
    • Export Citation
  • Pérez García, I., 1996: Major cold air outbreaks affecting coffee and citrus plantations in the eastern and northeastern Mexico. Atmósfera, 9, 4768.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., and T. Ambrizzi, 2005: Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical South America. Int. J. Climatol., 25, 215241, doi:10.1002/joc.1080.

    • Search Google Scholar
    • Export Citation
  • Portis, D. H., M. P. Cellitti, W. L. Chapman, and J. E. Walsh, 2006: Low-frequency variability and evolution of North American cold air outbreaks. Mon. Wea. Rev., 134, 579597, doi:10.1175/MWR3083.1.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 1994: Orographically trapped disturbances in the lower atmosphere: Scale analysis and simple models. Meteor. Atmos. Phys., 53, 131136, doi:10.1007/BF01029608.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 539, doi:10.1175/1520-0493(1997)125<0005:TSCSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, and L. F. Bosart, 1998: Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, doi:10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shafer, J. C., and W. J. Steenburgh, 2008: Climatology of strong intermountain cold fronts. Mon. Wea. Rev., 136, 784807, doi:10.1175/2007MWR2136.1.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., O. Martius, and J. Arnold, 2013: Cold surge episodes over southeastern Brazil—A potential vorticity perspective. Int. J. Climatol., 33, 27582767, doi:10.1002/joc.3618.

    • Search Google Scholar
    • Export Citation
  • Vera, C. S., and P. K. Vigliarolo, 2000: A diagnostic study of cold-air outbreaks over South America. Mon. Wea. Rev., 128, 324, doi:10.1175/1520-0493(2000)128<0003:ADSOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woo, S.-H., B.-M. Kim, J.-H. Jeong, S.-J. Kim, and G.-H. Lim, 2012: Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979–2011). J. Geophys. Res., 117, D18117, doi:10.1029/2011JD016929.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, doi:10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 328 51 2
PDF Downloads 46 22 1