Sensitivities in Large-Eddy Simulations of Mixed-Phase Arctic Stratocumulus Clouds Using a Simple Microphysics Approach

Colleen M. Kaul Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, and Swiss Federal Institute of Technology, Zurich, Switzerland

Search for other papers by Colleen M. Kaul in
Current site
Google Scholar
PubMed
Close
,
João Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by João Teixeira in
Current site
Google Scholar
PubMed
Close
, and
Kentaroh Suzuki Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Kentaroh Suzuki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic mixed-phase stratocumulus clouds are maintained by feedbacks between microphysical and dynamical phenomena, but the details of these interactions are incompletely understood. Although large-eddy simulations are a promising means of elucidating microphysics–turbulence relationships, the use of sophisticated microphysical schemes complicates analysis of their results. Here, the ability of a simplified one-moment scheme to capture basic features of this cloud type is investigated through simulations based on Mixed-Phase Arctic Cloud Experiment (MPACE), SHEBA/FIRE-ACE, and Indirect and Semi-Direct Aerosol Campaign (ISDAC) intercomparison studies. The results of the simple scheme show reasonable agreement with liquid and ice water path predictions reported by models using schemes of similar or greater complexity. Additional tests are performed to evaluate the sensitivity of the results to three main parameters of the scheme: the snow and ice size distribution intercept parameters and the exponent appearing in the temperature-dependent phase-partition function, which is used to diagnose cloud condensate amounts. Sensitivities of the SHEBA and ISDAC cases, both of which have low surface heat fluxes and low precipitation rates, tend to be similar, while the MPACE case, with higher surface fluxes and precipitation rates, shows somewhat different trends. Results of all three cases are found to be sensitive to the snow size distribution intercept parameter, but this quantity can be adequately estimated using a recently developed diagnostic expression based on observations of Arctic clouds.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-14-00319.s1.

Corresponding author address: Colleen M. Kaul, Geological Institute, Swiss Federal Institute of Technology Zurich, Soneggstrasse 5, 8092 Zurich, Switzerland. E-mail: colleen.kaul@erdw.ethz.ch

Abstract

Arctic mixed-phase stratocumulus clouds are maintained by feedbacks between microphysical and dynamical phenomena, but the details of these interactions are incompletely understood. Although large-eddy simulations are a promising means of elucidating microphysics–turbulence relationships, the use of sophisticated microphysical schemes complicates analysis of their results. Here, the ability of a simplified one-moment scheme to capture basic features of this cloud type is investigated through simulations based on Mixed-Phase Arctic Cloud Experiment (MPACE), SHEBA/FIRE-ACE, and Indirect and Semi-Direct Aerosol Campaign (ISDAC) intercomparison studies. The results of the simple scheme show reasonable agreement with liquid and ice water path predictions reported by models using schemes of similar or greater complexity. Additional tests are performed to evaluate the sensitivity of the results to three main parameters of the scheme: the snow and ice size distribution intercept parameters and the exponent appearing in the temperature-dependent phase-partition function, which is used to diagnose cloud condensate amounts. Sensitivities of the SHEBA and ISDAC cases, both of which have low surface heat fluxes and low precipitation rates, tend to be similar, while the MPACE case, with higher surface fluxes and precipitation rates, shows somewhat different trends. Results of all three cases are found to be sensitive to the snow size distribution intercept parameter, but this quantity can be adequately estimated using a recently developed diagnostic expression based on observations of Arctic clouds.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-14-00319.s1.

Corresponding author address: Colleen M. Kaul, Geological Institute, Swiss Federal Institute of Technology Zurich, Soneggstrasse 5, 8092 Zurich, Switzerland. E-mail: colleen.kaul@erdw.ethz.ch

Supplementary Materials

    • Supplemental Materials (PDF 52.35 KB)
Save
  • Abel, S., and I. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 21512162, doi:10.1002/qj.1949.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, doi:10.1175/2008MWR2582.1.

    • Search Google Scholar
    • Export Citation
  • Avramov, A., and J. Harrington, 2010: Influence of parameterized ice habit on simulated mixed phase Arctic clouds. J. Geophys. Res., 115, D03205, doi:10.1029/2009JD012108.

    • Search Google Scholar
    • Export Citation
  • Avramov, A., and Coauthors, 2011: Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC. J. Geophys. Res., 116, D00T08, doi:10.1029/2011JD015910.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831, doi:10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boudala, F., G. Isaac, S. Cober, and Q. Fu, 2004: Liquid fraction in stratiform mixed-phase clouds from in situ observations. Quart. J. Roy. Meteor. Soc., 130, 29192931, doi:10.1256/qj.03.153.

    • Search Google Scholar
    • Export Citation
  • Boville, B., P. Rasch, J. Hack, and J. McCaa, 2006: Representation of clouds and precipitation processes in the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19, 21842198, doi:10.1175/JCLI3749.1.

    • Search Google Scholar
    • Export Citation
  • Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86, 795807, doi:10.1175/BAMS-86-6-795.

    • Search Google Scholar
    • Export Citation
  • Cober, S., G. Isaac, A. Korolev, and J. Strapp, 2001: Assessing cloud-phase conditions. J. Appl. Meteor., 40, 19671983, doi:10.1175/1520-0450(2001)040<1967:ACPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, W. B. Rossow, and D. Randall, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, J., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81, 529, doi:10.1175/1520-0477(2000)081<0005:FACE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., E. W. Eloranta, and M. D. Shupe, 2009: Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations. J. Atmos. Sci., 66, 28742887, doi:10.1175/2009JAS3029.1.

    • Search Google Scholar
    • Export Citation
  • Devasthale, A., and M. Thomas, 2012: Sensitivity of cloud liquid water content estimates to the temperature-dependent thermodynamic phase: A global study using CloudSat data. J. Climate, 25, 72977307, doi:10.1175/JCLI-D-11-00521.1.

    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., and J. Quaas, 2004: Evaluation of cloud thermodynamic phase parameterizations in the LMDZ GCM by using POLDER satellite data. Geophys. Res. Lett., 31, L06126, doi:10.1029/2003GL019095.

    • Search Google Scholar
    • Export Citation
  • Ervens, B., G. Feingold, K. Sulia, and J. Harrington, 2011: The impact of microphysical parameters, ice nucleation mode, and habit growth on the ice/liquid partitioning in mixed-phase Arctic clouds. J. Geophys. Res., 116, D17205, doi:10.1029/2011JD015729.

    • Search Google Scholar
    • Export Citation
  • Fan, J., S. Ghan, M. Ovchinnikov, X. Liu, P. J. Rasch, and A. Korolev, 2011: Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res., 116, D00T07, doi:10.1029/2010JD015375.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A., A. Ackerman, G. McFarquhar, G. Zhang, M. Poellot, P. DeMott, A. Prenni, and A. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A., B. van Diedenhoven, A. Ackerman, A. Avramov, A. Mrowiec, H. Morrison, P. Zuidema, and M. Shupe, 2012: A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365389, doi:10.1175/JAS-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M., and J. Straka, 2008: The Berry and Reinhardt autoconversion parameterization: A digest. J. Appl. Meteor. Climatol., 47, 375396, doi:10.1175/2007JAMC1573.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W., 1989: On the influence of small-scale topography on precipitation. Quart. J. Roy. Meteor. Soc., 115, 633650, doi:10.1002/qj.49711548711.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298, doi:10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and D. Morris, 1996: The sensitivity of climate simulations to the specification of mixed phase clouds. Climate Dyn., 12, 641651, doi:10.1007/BF00216271.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52, 43444366, doi:10.1175/1520-0469(1995)052<4344:POICCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds. Atmos. Res., 51, 4575, doi:10.1016/S0169-8095(98)00098-2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, doi:10.1175/BAMS-86-11-1609.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, and C. H. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067, doi:10.1175/JAS3890.1.

    • Search Google Scholar
    • Export Citation
  • Hill, A. A., P. R. Field, K. Furtado, A. Korolev, and B. J. Shipway, 2014: Mixed-phase clouds in a turbulent environment. Part 1: Large-eddy simulation experiments. Quart. J. Roy. Meteor. Soc., 140, 855869, doi:10.1002/qj.2177.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J., C. Fairall, M. Shupe, P. Persson, E. L Andreas, P. Guest, and R. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Jiang, G.-S., and D. Peng, 2000: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput., 21, 21262143, doi:10.1137/S106482759732455X.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. Cotton, J. Pinto, J. Curry, and M. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentrations of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57, 21052117, doi:10.1175/1520-0469(2000)057<2105:CRSOMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kay, J., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., and R. Wilhemson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2008: Rates of phase transformation in mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 134, 595608, doi:10.1002/qj.230.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, doi:10.1256/qj.01.203.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 3965, doi:10.1256/qj.01.204.

    • Search Google Scholar
    • Export Citation
  • Li, Z.-X., and H. L. Treut, 1992: Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modelling assumptions. Climate Dyn., 7, 133139, doi:10.1007/BF00211155.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2011: Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations. J. Geophys. Res., 116, D00T11, doi:10.1029/2011JD015889.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., K.-M. Xu, H. Morrison, and G. McFarquhar, 2008: Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations. J. Atmos. Sci., 65, 12851303, doi:10.1175/2007JAS2467.1.

    • Search Google Scholar
    • Export Citation
  • Martin, G., D. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939, doi:10.1175/2011MWR3599.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., G. Zhang, M. Poellot, G. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, doi:10.1175/2010BAMS2935.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548, doi:10.1175/2007JAS2491.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, J. O. Pinto, and J. A. Curry, 2005: Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetimes of Arctic mixed-phase clouds. Geophys. Res. Lett., 32, L18801, doi:10.1029/2005GL023614.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., P. Zuidema, G. M. McFarquhar, A. Bansemer, and A. J. Heymsfield, 2011a: Snow microphysical observations in shallow mixed-phase and deep frontal Arctic cloud systems. Quart. J. Roy. Meteor. Soc., 137, 15891601, doi:10.1002/qj.840.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2011b: Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst., 3, M05001, doi:10.1029/2011MS000066.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., C. Seaman, T. H. Vonder Haar, and G. Liu, 2013: In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 269279, doi:10.1175/JAMC-D-11-0202.1.

    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., A. Korolev, and J. Fan, 2011: Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud. J. Geophys. Res., 116, D00T06, doi:10.1029/2011JD015888.

    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., and Coauthors, 2014: Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst., 6, 223248, doi:10.1002/2013MS000282.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 954 pp.

  • Rauber, R., and A. Tokay, 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48, 10051023, doi:10.1175/1520-0469(1991)048<1005:AEFTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. Rasmussen, and R. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S., and P. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S., and P. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal bands. J. Atmos. Sci., 41, 29492972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Savre, J., A. M. L. Ekman, and G. Svensson, 2014: Technical note: Introduction to MIMICA, a large-eddy simulation solver for cloudy planetary boundary layers. J. Adv. Model. Earth Syst., 6, 630649, doi:10.1002/2013MS000292.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size and radar reflectivity. J. Atmos. Sci., 27, 299307, doi:10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M., 2011: Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteor. Climatol., 50, 645661, doi:10.1175/2010JAMC2468.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M., and J. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M., S. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, doi:10.1175/JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M., P. Kollias, P. Persson, and G. McFarquhar, 2008: Vertical motions in Arctic mixed-phase stratiform clouds. J. Atmos. Sci., 65, 13041332, doi:10.1175/2007JAS2479.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., H. Morrison, O. Persson, M. Shupe, and J.-W. Bao, 2009: Investigation of microphysical parameterizations of snow and ice in Arctic clouds during M-PACE through model–observation comparisons. Mon. Wea. Rev., 137, 31103128, doi:10.1175/2009MWR2688.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. Shupe, P. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148, doi:10.5194/acp-11-10127-2011.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. Shupe, O. Persson, H. Morrison, T. Yamaguchi, P. M. Caldwell, and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface layer and cloud-top inversion layer moisture sources. J. Atmos. Sci., 71, 574595, doi:10.1175/JAS-D-13-0179.1.

    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., R. D. Moser, and M. M. Rogers, 1991: Spectral methods for the Navier–Stokes equations with one infinite and two periodic dimensions. J. Comput. Phys., 96, 297324, doi:10.1016/0021-9991(91)90238-G.

    • Search Google Scholar
    • Export Citation
  • Stephens, G., P. Gabriel, and P. Partain, 2001: Parameterization of atmospheric radiative transfer. Part I: Validity of simple models. J. Atmos. Sci., 58, 33913409, doi:10.1175/1520-0469(2001)058<3391:POARTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, D21309, doi:10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysical scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. Field, R. Rasmussen, and W. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysical scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1981: The use of ice-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 10941102, doi:10.1175/1520-0493(1981)109<1094:TUOLLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., A. M. Fridlind, A. S. Ackerman, E. W. Eloranta, and G. M. McFarquhar, 2009: An evaluation of ice formation in large-eddy simulations of supercooled arctic stratocumulus using ground-based lidar and cloud radar. J. Geophys. Res., 114, D10203, doi:10.1029/2008JD011198.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17, 603615, doi:10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., U. Bhatt, and V. Alexeev, 2011: Factors influencing simulated changes in future Arctic cloudiness. J. Climate, 24, 48174830, doi:10.1175/2011JCLI4029.1.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221, doi:10.1175/BAMS-88-2-205.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Yang, F., M. Ovchinnikov, and R. Shaw, 2013: Minimalist model of ice microphysics in mixed-phase stratiform clouds. Geophys. Res. Lett., 40, 37563760, doi:10.1002/grl.50700.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2005: An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 62, 160176, doi:10.1175/JAS-3368.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 102 7
PDF Downloads 354 73 2