• Atallah, E. H., , and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, doi:10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., , W. Huang, , Y.-R. Guo, , A. J. Bourgeois, , and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , G. A. Wick, , J. R. Spackman, , T. Hock, , and R. Hood, 2011: Real-time data transmission, processing and dissemination of GPS dropwindsonde data from the NASA Global Hawk unmanned aircraft. 2011 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract IN13C-04.

  • Brown, D. P., 2013: Tropical cyclone report: Hurricane Nadine (AL142012). NOAA/National Hurricane Center Tech. Rep. AL142012, 19 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL142012_Nadine.pdf.]

  • Chan, J. C.-L., , and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, doi:10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , M. Mainelli, , L. K. Shay, , J. A. Knaff, , and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction System (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • DeSlover, D. H., , E. Weisz, , J. K. Taylor, , R. Holz, , H. Revercomb, , D. C. Tobin, , R. O. Knuteson, , and W. L. Smith, 2013: S-HIS dual regression analysis relative to dropsonde and lidar measurements during HS3. Preprints, HS3 Science Team and Deployment Preparation Meeting, Moffett Field, CA, NASA. [Available online at https://airbornescience.nasa.gov/sites/default/files/documents/2013HS3_STM_DHD.pdf.]

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, doi:10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., , A. C. Thomas, , M. J. Collins, , W. R. Crawford, , and D. L. Mackas, 1986: An objective method for computing advective surface velocities from sequential infrared satellite images. J. Geophys. Res., 91, 12 86512 878, doi:10.1029/JC091iC11p12865.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., , and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, doi:10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., 1985: The influence of winds and topography on sea surface temperature patterns over the northern California slope. J. Geophys. Res., 90, 11 78311 798, doi:10.1029/JC090iC06p11783.

    • Search Google Scholar
    • Export Citation
  • McGill, M., , D. Hlavka, , W. Hart, , V. S. Scott, , J. Spinhirne, , and B. Schmid, 2002: Cloud physics lidar: Instrument description and initial measurement results. Appl. Opt., 41, 37253734, doi:10.1364/AO.41.003725.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteor., 15, 184195, doi:10.1175/1520-0469(1958)015<0184:OTMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., , and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 25552579, doi:10.1175/1520-0493(1998)126<2555:UTMTDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., , and F. Zhang, 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. J. Adv. Model. Earth Syst., 6, 3858, doi:10.1002/2013MS000297.

    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., , F. Zhang, , and D. P. Stern, 2013: Predictability and dynamics of a non-intensifying tropical storm: Erika (2009). J. Atmos. Sci., 70, 25052524, doi:10.1175/JAS-D-12-0243.1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., , W.-G. Cheon, , S.-Y. Hong, , and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, doi:10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., , P. B. Rhines, , and R. O. R. Y. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 4, 381404, doi:10.1080/03091927208236105.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and et al. , 1998: Recent results from two new aircraft-based Fourier transform interferometers: The Scanning High-resolution Interferometer Sounder and the NPOESS Atmospheric Sounder Testbed Interferometer. Eighth Int. Workshop on Atmospheric Science from Space Using Fourier Transform Spectrometry (ASSFTS), Toulouse, France, Météo-France., 6 pp. [Available online at http://cimss.ssec.wisc.edu/nasti/talks/shisextabs.ps.]

  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Riemer, M., , and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414, doi:10.5194/acp-11-9395-2011.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , S. Chen, , J. Tenerelli, , and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771598, doi:10.1175//2546.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., , P. G. Black, , A. J. Mariano, , J. D. Hawkins, , and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 22720 248, doi:10.1029/92JC01586.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., , and H. Riehl, 1958: Mid-troposphere ventilation as a constraint on hurricane development and maintenance. Proc. Tech. Conf. on Hurricanes, Miami Beach, FL, Amer. Meteor. Soc., D4.1–D4.10.

  • Sippel, J. A., , and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778, doi:10.1175/2010JAS3172.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , S. A. Braun, , and C.-L. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, doi:10.1175/2011JAS3648.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR/TN–475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stramma, L., , P. Cornillon, , and J. F. Price, 1986: Satellite observations of sea surface cooling by hurricanes. J. Geophys. Res., 91, 50315035, doi:10.1029/JC091iC04p05031.

    • Search Google Scholar
    • Export Citation
  • Tao, D., , and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, doi:10.1002/2014MS000314.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, doi:10.1175/2009MWR2879.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., , and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, doi:10.1175/2011MWR3602.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., , and F. Zhang, 2014: Impact of assimilating airborne reconnaissance observations on hurricane intensity prediction with the PSU cycling WRF-EnKF system and its real-time forecast performance during 2013 in support of NOAA HFIP and NASA HS3. Proc. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA. Amer. Meteor. Soc., 14D.6. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper245318.html.]

  • Zehr, R. M., , J. A. Knaff, , and M. DeMaria, 2008: Tropical cyclone environmental vertical wind shear analysis using a microwave sounder. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 14B.2. [Available online at https://ams.confex.com/ams/pdfpapers/ 137917.pdf.]

  • Zhang, F., , and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, doi:10.1175/2009JAS2824.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 6
PDF Downloads 29 29 0

Dynamics and Predictability of Hurricane Nadine (2012) Evaluated through Convection-Permitting Ensemble Analysis and Forecasts

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 I.M. Systems Group, Rockville, Maryland, and National Oceanic and Atmospheric Administration/Environmental Modeling Center, College Park, Maryland
  • | 3 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 4 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

The governing dynamics and uncertainties of an ensemble simulation of Hurricane Nadine (2012) are assessed through the use of a regional-scale convection-permitting analysis and forecast system based on the Weather Research and Forecasting (WRF) Model and an ensemble Kalman filter (EnKF). For this case, the data that are utilized were collected during the 2012 phase of the National Aeronautics and Space Administration’s (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment. The majority of the tracks of this ensemble were successful, correctly predicting Nadine’s turn toward the southwest ahead of an approaching midlatitude trough, though 10 members forecasted Nadine to be carried eastward by the trough. Ensemble composite and sensitivity analyses reveal the track divergence to be caused by differences in the environmental steering flow that resulted from uncertainties associated with the position and subsequent strength of a midlatitude trough.

Despite the general success of the ensemble track forecasts, the intensity forecasts indicated that Nadine would strengthen, which did not happen. A sensitivity experiment performed with the inclusion of sea surface temperature (SST) updates significantly reduced the intensity errors associated with the simulation. This weakening occurred as a result of cooling of the SST field in the vicinity of Nadine, which led to weaker surface sensible and latent heat fluxes at the air–sea interface. A comparison of environmental variables, including relative humidity, temperature, and shear yielded no obvious differences between the WRF-EnKF simulations and the HS3 observations. However, an initial intensity bias in which the WRF-EnKF vortices are stronger than the observed vortex appears to be the most likely cause of the final intensity errors.

Corresponding author address: Prof. Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: fzhang@psu.edu

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Abstract

The governing dynamics and uncertainties of an ensemble simulation of Hurricane Nadine (2012) are assessed through the use of a regional-scale convection-permitting analysis and forecast system based on the Weather Research and Forecasting (WRF) Model and an ensemble Kalman filter (EnKF). For this case, the data that are utilized were collected during the 2012 phase of the National Aeronautics and Space Administration’s (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment. The majority of the tracks of this ensemble were successful, correctly predicting Nadine’s turn toward the southwest ahead of an approaching midlatitude trough, though 10 members forecasted Nadine to be carried eastward by the trough. Ensemble composite and sensitivity analyses reveal the track divergence to be caused by differences in the environmental steering flow that resulted from uncertainties associated with the position and subsequent strength of a midlatitude trough.

Despite the general success of the ensemble track forecasts, the intensity forecasts indicated that Nadine would strengthen, which did not happen. A sensitivity experiment performed with the inclusion of sea surface temperature (SST) updates significantly reduced the intensity errors associated with the simulation. This weakening occurred as a result of cooling of the SST field in the vicinity of Nadine, which led to weaker surface sensible and latent heat fluxes at the air–sea interface. A comparison of environmental variables, including relative humidity, temperature, and shear yielded no obvious differences between the WRF-EnKF simulations and the HS3 observations. However, an initial intensity bias in which the WRF-EnKF vortices are stronger than the observed vortex appears to be the most likely cause of the final intensity errors.

Corresponding author address: Prof. Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: fzhang@psu.edu

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Save