A Hybrid Global Ocean Data Assimilation System at NCEP

Stephen G. Penny National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Stephen G. Penny in
Current site
Google Scholar
PubMed
Close
,
David W. Behringer National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by David W. Behringer in
Current site
Google Scholar
PubMed
Close
,
James A. Carton Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by James A. Carton in
Current site
Google Scholar
PubMed
Close
, and
Eugenia Kalnay Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Eugenia Kalnay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonal forecasting with a coupled model requires accurate initial conditions for the ocean. A hybrid data assimilation has been implemented within the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) as a future replacement of the operational three-dimensional variational data assimilation (3DVar) method. This Hybrid-GODAS provides improved representation of model uncertainties by using a combination of dynamic and static background error covariances, and by using an ensemble forced by different realizations of atmospheric surface conditions. An observing system simulation experiment (OSSE) is presented spanning January 1991 to January 1999, with a bias imposed on the surface forcing conditions to emulate an imperfect model. The OSSE compares the 3DVar used by the NCEP Climate Forecast System (CFSv2) with the new hybrid, using simulated in situ ocean observations corresponding to those used for the NCEP Climate Forecast System Reanalysis (CFSR).

The Hybrid-GODAS reduces errors for all prognostic model variables over the majority of the experiment duration, both globally and regionally. Compared to an ensemble Kalman filter (EnKF) used alone, the hybrid further reduces errors in the tropical Pacific. The hybrid eliminates growth in biases of temperature and salinity present in the EnKF and 3DVar, respectively. A preliminary reanalysis using real data shows that reductions in errors and biases are qualitatively similar to the results from the OSSE. The Hybrid-GODAS is currently being implemented as the ocean component in a prototype next-generation CFSv3, and will be used in studies by the Climate Prediction Center to evaluate impacts on ENSO prediction.

Corresponding author address: Stephen G. Penny, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, 4254 Stadium Dr., College Park, MD 20742-2425. E-mail: steve.penny@noaa.gov

Abstract

Seasonal forecasting with a coupled model requires accurate initial conditions for the ocean. A hybrid data assimilation has been implemented within the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) as a future replacement of the operational three-dimensional variational data assimilation (3DVar) method. This Hybrid-GODAS provides improved representation of model uncertainties by using a combination of dynamic and static background error covariances, and by using an ensemble forced by different realizations of atmospheric surface conditions. An observing system simulation experiment (OSSE) is presented spanning January 1991 to January 1999, with a bias imposed on the surface forcing conditions to emulate an imperfect model. The OSSE compares the 3DVar used by the NCEP Climate Forecast System (CFSv2) with the new hybrid, using simulated in situ ocean observations corresponding to those used for the NCEP Climate Forecast System Reanalysis (CFSR).

The Hybrid-GODAS reduces errors for all prognostic model variables over the majority of the experiment duration, both globally and regionally. Compared to an ensemble Kalman filter (EnKF) used alone, the hybrid further reduces errors in the tropical Pacific. The hybrid eliminates growth in biases of temperature and salinity present in the EnKF and 3DVar, respectively. A preliminary reanalysis using real data shows that reductions in errors and biases are qualitatively similar to the results from the OSSE. The Hybrid-GODAS is currently being implemented as the ocean component in a prototype next-generation CFSv3, and will be used in studies by the Climate Prediction Center to evaluate impacts on ENSO prediction.

Corresponding author address: Stephen G. Penny, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, 4254 Stadium Dr., College Park, MD 20742-2425. E-mail: steve.penny@noaa.gov
Save
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., 2007: The Global Ocean Data Assimilation System (GODAS) at NCEP. 11th Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, San Antonio, TX, Amer. Meteor. Soc., 3.3. [Available online at https://ams.confex.com/ams/pdfpapers/119541.pdf.]

  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/pdfpapers/70720.pdf.]

  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, doi:10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourlès, B., and Coauthors, 2008: The PIRATA Program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89, 11111125, doi:10.1175/2008BAMS2462.1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827832, doi:10.1038/321827a0.

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309, doi:10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, and X. Cao, 2000b: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30, 311326, doi:10.1175/1520-0485(2000)030<0311:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., R. A. deSzoeke, M. G. Schlax, K. El Nagger, and N. Siwertz, 1998: Geophysical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting. Science, 269, 16991702, doi:10.1126/science.269.5231.1699.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, doi:10.1175/BAMS-87-2-175.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., and Coauthors, 1999: World Ocean Database 1998, documentation and quality control version 2.0. National Oceanographic Data Center Internal Rep. 14, 127 pp.

  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, doi:10.1016/j.ocemod.2013.10.005.

    • Search Google Scholar
    • Export Citation
  • Derber, J. D., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 13331347, doi:10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, doi:10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522, doi:10.1175/2010MWR3328.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, doi:10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-Ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Hamrud, M., M. Bonavita, and L. Isaksen, 2014: EnKF and Hybrid Gain Ensemble Data Assimilation. ECMWF Tech. Rep. 733, 34 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/701-800/tm733.pdf.]

  • Hoffman, R. N., J. V. Ardizzone, S. M. Leidner, D. K. Smith, and R. Atlas, 2013: Error estimates for ocean surface winds: Applying Desroziers diagnostics to the cross-calibrated, multiplatform analysis of wind speed. J. Atmos. Oceanic Technol., 30, 25962603, doi:10.1175/JTECH-D-13-00018.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, D. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 49014925, doi:10.1175/2010JCLI3373.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., S. Yeager, G. Danabasoglu, T. Hoar, N. Collins, K. Raeder, J. Anderson, and J. Tribbia, 2013: An ensemble adjustment Kalman filter for the CCSM4 ocean component. J. Climate, 26, 73927413, doi:10.1175/JCLI-D-12-00402.1.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., M. M. Rienecker, J. P. Jacob, and R. Kovach, 2008: Error covariance modeling in the GMAO ocean ensemble Kalman filter. Mon. Wea. Rev., 136, 29642982, doi:10.1175/2007MWR2243.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, doi:10.1029/2002GL015924.

  • Kleist, D. T., 2012: An evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Ph.D. dissertation, University of Maryland, 149 pp. [Available online at http://drum.lib.umd.edu/handle/1903/13135.]

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Martin, M. J., and Coauthors, 2015: Status and future of data assimilation in operational oceanography. J. Oper. Oceanogr., 8 (Suppl.), s28–s48, doi:10.1080/1755876X.2015.1022055.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, doi:10.1029/2003GL016872.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, doi:10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273, doi:10.1006/jcph.1996.0136.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Coauthors, 2013: Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3. Ocean Modell., 67, 5270, doi:10.1016/j.ocemod.2013.03.008.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, doi:10.1111/j.1600-0870.2004.00076.x.

    • Search Google Scholar
    • Export Citation
  • Penny, S. G., 2011: Data assimilation of the Global Ocean using the 4D-local ensemble transform Kalman filter (4D-LETKF) and the Modular Ocean Model (MOM2). Ph.D. dissertation, University of Maryland, 141 pp. [Available online at http://hdl.handle.net/1903/11716.]

  • Penny, S. G., 2014: The hybrid local ensemble transform Kalman filter. Mon. Wea. Rev., 142, 21392149, doi:10.1175/MWR-D-13-00131.1.

  • Penny, S. G., E. Kalnay, J. A. Carton, B. R. Hunt, K. Ide, T. Miyoshi, and G. A. Chepurin, 2013: The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model. Nonlinear Processes Geophys., 20, 10311046, doi:10.5194/npg-20-1031-2013.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., E. Hackert, A. J. Busalacchi, R. Murtugudde, and G. S. E. Lagerloef, 2002: Mechanisms of the 1997–1998 El Niño–La Niña, as inferred from space-based observations. J. Geophys. Res., 107, 3037, doi:10.1029/2001JC000850.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., and M. J. McPhaden, 2004: Tropical Pacific upper ocean heat content variations and Indian summer monsoon rainfall. Geophys. Res. Lett., 31, L18203, doi:10.1029/2004GL020631.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi:10.1175/2010BAMS3001.1.

  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Saji, N. H., and Coauthors, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

  • Shinoda, T., 2010: Observed dispersion relation of Yanai waves and 17-day tropical instability waves in the Pacific Ocean. SOLA, 6, 17–20, doi:10.2151/sola.2010-005.

  • Smith, T., A. G. Barnston, M. Ji, and M. Chelliah, 1995: The impact of Pacific Ocean subsurface data on operational prediction of tropical Pacific SST at the NCEP. Wea. Forecasting, 10, 708714, doi:10.1175/1520-0434(1995)010<0708:TIOPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and Coauthors, 2010: The data management system for the Global Temperature and Salinity Profile Programme. Proceedings of OceanObs.09: Sustained Ocean Observations and Information for Society, Vol. 2, ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.86.

  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Vossepoel, F. C., and D. W. Behringer, 2000: Impact of sea level assimilation on salinity variability in the western equatorial Pacific. J. Phys. Oceanogr., 30, 17061721, doi:10.1175/1520-0485(2000)030<1706:IOSLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. P. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 11901200, doi:10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 71297132, doi:10.1029/JC090iC04p07129.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., A. Leetmaa, and M. Ji, 2000: ENSO prediction with Markov models: The impact of sea level. J. Climate, 13, 849871, doi:10.1175/1520-0442(2000)013<0849:EPWMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: Ocean heat content variability and ENSO cycles. J. Phys. Oceanogr., 19, 475486, doi:10.1175/1520-0485(1989)019<0475:OHCVAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and A. Rosati, 2010: An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon. Wea. Rev., 138, 39053931, doi:10.1175/2010MWR3326.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, doi:10.1175/MWR3466.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 703 218 15
PDF Downloads 400 91 4