Linking the Anomaly Initialization Approach to the Mapping Paradigm: A Proof-of-Concept Study

Robin J. T. Weber Institut Catalá de Ciéncies del Clima (IC3), Barcelona, Spain

Search for other papers by Robin J. T. Weber in
Current site
Google Scholar
PubMed
Close
,
Alberto Carrassi Nansen Environmental and Remote Sensing Center, Bergen, Norway, and Institut Catalá de Ciéncies del Clima (IC3), Barcelona, Spain

Search for other papers by Alberto Carrassi in
Current site
Google Scholar
PubMed
Close
, and
Francisco J. Doblas-Reyes Institut Catalá de Ciéncies del Clima (IC3), and Institució Catalana de Recerca i Estudis Avançats, and Barcelona Supercomputing Center-Centro Nacional de Supercomputación, Barcelona, Spain

Search for other papers by Francisco J. Doblas-Reyes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonal-to-decadal predictions are initialized using observations of the present climatic state in full field initialization (FFI). Such model integrations undergo a drift toward the model attractor due to model deficiencies that incur a bias in the model. The anomaly initialization (AI) approach reduces the drift by adding an estimate of the bias onto the observations at the expense of a larger initial error.

In this study FFI is associated with the fidelity paradigm, and AI is associated with an instance of the mapping paradigm, in which the initial conditions are mapped onto the imperfect model attractor by adding a fixed error term; the mapped state on the model attractor should correspond to the nature state. Two diagnosis tools assess how well AI conforms to its own paradigm under various circumstances of model error: the degree of approximation of the model attractor is measured by calculating the overlap of the AI initial conditions PDF with the model PDF; and the sensitivity to random error in the initial conditions reveals how well the selected initial conditions on the model attractor correspond to the nature states. As a useful reference, the initial conditions of FFI are subjected to the same analysis.

Conducting hindcast experiments using a hierarchy of low-order coupled climate models, it is shown that the initial conditions generated using AI approximate the model attractor only under certain conditions: differences in higher-than-first-order moments between the model and nature PDFs must be negligible. Where such conditions fail, FFI is likely to perform better.

Corresponding author address: Robin J. T. Weber, Climate Forecasting Unit, Institut Catalá de Ciéncies del Clima (IC3), Doctor Trueta 203 3a Planta, Barcelona 08005, Spain. E-mail: robin.weber@ic3.cat

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

Seasonal-to-decadal predictions are initialized using observations of the present climatic state in full field initialization (FFI). Such model integrations undergo a drift toward the model attractor due to model deficiencies that incur a bias in the model. The anomaly initialization (AI) approach reduces the drift by adding an estimate of the bias onto the observations at the expense of a larger initial error.

In this study FFI is associated with the fidelity paradigm, and AI is associated with an instance of the mapping paradigm, in which the initial conditions are mapped onto the imperfect model attractor by adding a fixed error term; the mapped state on the model attractor should correspond to the nature state. Two diagnosis tools assess how well AI conforms to its own paradigm under various circumstances of model error: the degree of approximation of the model attractor is measured by calculating the overlap of the AI initial conditions PDF with the model PDF; and the sensitivity to random error in the initial conditions reveals how well the selected initial conditions on the model attractor correspond to the nature states. As a useful reference, the initial conditions of FFI are subjected to the same analysis.

Conducting hindcast experiments using a hierarchy of low-order coupled climate models, it is shown that the initial conditions generated using AI approximate the model attractor only under certain conditions: differences in higher-than-first-order moments between the model and nature PDFs must be negligible. Where such conditions fail, FFI is likely to perform better.

Corresponding author address: Robin J. T. Weber, Climate Forecasting Unit, Institut Catalá de Ciéncies del Clima (IC3), Doctor Trueta 203 3a Planta, Barcelona 08005, Spain. E-mail: robin.weber@ic3.cat

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save
  • Bengtsson, L., M. Ghil, and E. Källen, Eds., 1981: Dynamic Meteorology: Data Assimilation Methods. Springer Verlag, 330 pp.

  • Bhattacharyya, A., 1943: On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc., 35, 99–110.

    • Search Google Scholar
    • Export Citation
  • Carrassi, A., R. Weber, V. Guemas, F. Doblas-Reyes, M. Asif, and D. Volpi, 2014: Full-field and anomaly initialization using a low-order climate model: A comparison and proposals for advanced formulations. Nonlinear Processes Geophys., 21, 521–537, doi:10.5194/npg-21-521-2014.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and D. M. Straus, 1980: Form-drag instability, multiple equilibria, and propagating planetary waves in baroclinic, orographically forced, planetary wave systems. J. Atmos. Sci., 37, 1157–1176, doi:10.1175/1520-0469(1980)037<1157:FDIMEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Counillon, F., I. Bethke, N. Keenlyside, M. Bentsen, L. Bertino, and F. Zheng, 2014: Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: A twin experiment. Tellus, 66A, 21074, doi:10.3402/tellusa.v66.21074.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F., J. García-Serrano, F. Lienert, A. P. Biescas, and L. Rodrigues, 2013: Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245–268, doi:10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095–1107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., V. Guemas, B. Wouters, S. Corti, I. Andreu-Burillo, F. Doblas-Reyes, K. Wyser, and M. Caian, 2013: Multiyear climate predictions using two initialization strategies. Geophys. Res. Lett., 40, 1794–1798, doi:10.1002/grl.50355.

  • Janjić, T., and S. Cohn, 2006: Treatment of observation error due to unresolved scales in atmospheric data assimilation. Mon. Wea. Rev., 134, 2900–2915, doi:10.1175/MWR3229.1.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Fluids Eng., 82, 35–45.

  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 364 pp.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., M. Alonso-Balmaseda, S. Corti, F. Molteni, and T. Stockdale, 2013: Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate Dyn., 41, 2393–2409, doi:10.1007/s00382-012-1599-2.

    • Search Google Scholar
    • Export Citation
  • Palatella, L., A. Carrassi, and A. Trevisan, 2013: Lyapunov vectors and assimilation in the unstable subspace: Theory and applications. J. Phys. A: Math. Theor., 46, 254020, doi:10.1088/1751-8113/46/25/254020.

  • Peña, M., and E. Kalnay, 2004: Separating fast and slow modes in coupled chaotic systems. Nonlinear Processes Geophys., 11, 319–327, doi:10.5194/npg-11-319-2004.

    • Search Google Scholar
    • Export Citation
  • Reinhold, B. B., and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110, 1105–1145, doi:10.1175/1520-0493(1982)110<1105:DOWRQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Gomez, E., C. Cassou, Y. Ruprich-Robert, E. Fernandez, and L. Terray, 2015: Drift dynamics in a coupled model initialized for decadal forecasts. Climate Dyn., doi:10.1007/s00382-015-2678-y, in press.

    • Search Google Scholar
    • Export Citation
  • Smith, D., and J. Murphy, 2007: An objective ocean temperature and salinity analysis using covariances from a global model. J. Geophys. Res., 112, C02022, doi:10.1029/2005JC003172.

  • Smith, D., A. Cusack, A. Colman, C. Folland, G. Harris, and J. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796–799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, D., R. Eade, and H. Pohlmann, 2013: A comparison of fullfield and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 3325–3338, doi:10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T., 1997: Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon. Wea. Rev., 125, 809–818, doi:10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tardif, R., G. J. Hakim, and C. Snyder, 2014: Coupled atmosphere–ocean data assimilation experiments with a low-order climate model. Climate Dyn., 43, 1631–1643, doi:10.1007/s00382-013-1989-0.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and M. Peña, 2007: Data assimilation and numerical forecasting with imperfect models: The mapping paradigm. Physica D, 230, 146–158, doi:10.1016/j.physd.2006.08.016.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vannitsem, S., 2014: Stochastic modelling and predictability: Analysis of a low-order coupled ocean-atmosphere model. Philos. Trans. Roy. Soc. London, A372, 2018, doi:10.1098/rsta.2013.0282.

  • Vannitsem, S., and L. De Cruz, 2014: A 24-variable low-order coupled ocean-atmosphere model: OA-QG-WS v2. Geosci. Model Dev., 7, 649–662, doi:10.5194/gmd-7-649-2014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1802 276 15
PDF Downloads 162 69 2