The Influence of the Ocean on Typhoon Nuri (2008)

Jingru Sun Center for Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Jingru Sun in
Current site
Google Scholar
PubMed
Close
and
Lie-Yauw Oey Institute of Hydrological and Oceanic Sciences, and Atmospheric Science Department, National Central University, Taoyuan County, Taiwan, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Lie-Yauw Oey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Typhoon Nuri (2008) was 1 of approximately 120 typhoons in the past 60 years that passed through a narrow gap, the Luzon Strait, connecting the western North Pacific and the South China Sea (SCS). In total 70% of these storms, including Nuri, reached their maximum intensities over the warm waters east of Luzon and in the Kuroshio, then rapidly weakened in the SCS. Numerical experiments were conducted to understand the intensity change of Nuri. Westward across the Kuroshio in the Luzon Strait, the 26°C isotherm shallows rapidly by half. This and stronger mixing by wind–ocean resonance preferentially cooled sea surface temperature and weakened the typhoon in SCS. A positive-feedback mechanism is then described to explain the intensification of Nuri over the western North Pacific.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0029.s1.

Corresponding author address: L.-Y. Oey, National Central University, IHOS and Atmospheric Science Dept., No.300, Zhongda Rd., Jhongli City, Taoyuan County 320, Taiwan. E-mail: lyooey@gmail.com

Abstract

Typhoon Nuri (2008) was 1 of approximately 120 typhoons in the past 60 years that passed through a narrow gap, the Luzon Strait, connecting the western North Pacific and the South China Sea (SCS). In total 70% of these storms, including Nuri, reached their maximum intensities over the warm waters east of Luzon and in the Kuroshio, then rapidly weakened in the SCS. Numerical experiments were conducted to understand the intensity change of Nuri. Westward across the Kuroshio in the Luzon Strait, the 26°C isotherm shallows rapidly by half. This and stronger mixing by wind–ocean resonance preferentially cooled sea surface temperature and weakened the typhoon in SCS. A positive-feedback mechanism is then described to explain the intensification of Nuri over the western North Pacific.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0029.s1.

Corresponding author address: L.-Y. Oey, National Central University, IHOS and Atmospheric Science Dept., No.300, Zhongda Rd., Jhongli City, Taoyuan County 320, Taiwan. E-mail: lyooey@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 1.85 MB)
Save
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos,, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, doi:10.1175/2010BAMS2946.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, doi:10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, 1990–2005, doi:10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, doi:10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, doi:10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., N. M. Zoumakis, D. Melas, C. J. Lolis, and P. Kassomenos, 2013: Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes: Effect on large-scale processes. Atmos. Res., 132133, 125143, doi:10.1016/j.atmosres.2013.05.004.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and K.-B. Liu, 2003: Examining the ENSO-typhoon hypothesis. Climate Res., 25, 4354, doi:10.3354/cr025043.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, doi:10.1038/44326.

  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz. (A new hydrodynamical vorticity equation). Meteor. Z., 59, 277281.

  • Ferrier, B. S., Y. Jin, Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints, 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 10.1. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47241.htm.]

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Goldenberg, S. B., C. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 2308–2324, doi:10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Hausman, S. A., K. V. Ooyama, and W. H. Schubert, 2006: Potential vorticity structure of simulated hurricanes. J. Atmos. Sci., 63, 87108, doi:10.1175/JAS3601.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, and T. Li, 2013: Evaluation of multiple dynamic initialization schemes for tropical cyclone prediction. Mon. Wea. Rev., 141, 4028–4048, doi:10.1175/MWR-D-12-00329.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294–3315, doi:10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Academic Press, 535 pp.

  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 (2), 129151.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. S. Chen, B. F. Smull, W. C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235–1239, doi:10.1126/science.1135650.

  • Huang, S.-M., and L.-Y. Oey, 2015: Right-side cooling and phytoplankton bloom in the wake of a tropical cyclone. J. Geophys. Res. Oceans, doi:10.1002/2015JC010896, in press.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Krishnamurti, T. N., L. Stefanova, L. Watson, and S. Pattnaik, 2007: Addressing hurricanes intensity through angular momentum and scale energetics approaches. Pure Appl. Geophys., 164, 14291441, doi:10.1007/s00024-007-0238-z.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., R. W. Schmitt, and J. M. Toole, 1995: The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25, 942957, doi:10.1175/1520-0485(1995)025<0942:TEBIAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2000: Climate variability of tropical cyclones: Past, present and future. Storms, R. A. Pielke Sr. and R. A Pielke Jr., Eds., Routledge, 220–241.

  • Lee, C.-Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 35763594, doi:10.1175/JAS-D-12-046.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271944, doi:10.1175/MWR-D-13-00122.1.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, doi:10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 4819–4838,doi:10.1175/2008MWR2366.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category-5 typhoons. Part I: Ocean features and the category-5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, doi:10.1175/2008MWR2277.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035, doi:10.1175/2010MWR3293.1.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, doi:10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lueck, R., and T. Osborn, 1986: The dissipation of kinetic energy in a warm-core ring. J. Geophys. Res., 91, 803818, doi:10.1029/JC091iC01p00803.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, doi:10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marteau, R., Y. Richard, B. Pohl, C. C. Smith, and T. Castel, 2015: High-resolution rainfall variability simulated by the WRF RCM: Application to eastern France. Climate Dyn., 44, 1093–1107, doi:10.1007/s00382-014-2125-5.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock, 2001: Development of a next generation regional weather research and forecast model. Developments in Teracomputing: Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology, Vol. 1, World Scientific, 269276.

  • Montgomery, M. T., and R. K. Smith, 2012: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment–Part 2: Observations of the convective environment. Atmos. Chem. Phys., 12, 40014009, doi:10.5194/acp-12-4001-2012.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., T. Ezer, D.-P. Wang, S.-J. Fan, and X.-Q. Yin, 2006: Loop Current warming by Hurricane Wilma. Geophys. Res. Lett., 33, L08613, doi:10.1029/2006GL025873.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., T. Ezer, D.-P. Wang, X.-Q. Yin, and S.-J. Fan, 2007: Hurricane-induced motions and interaction with ocean currents. Cont. Shelf Res., 27, 12491263, doi:10.1016/j.csr.2007.01.008.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., M. Inoue, R. Lai, X. H. Lin, S. E. Welsh, and L. J. Rouse Jr., 2008: Stalling of near-inertial waves in a cyclone. Geophys. Res. Lett., 35, L12604, doi:10.1029/2008GL034273.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., Y.-L. Chang, Y.-C. Lin, M.-C. Chang, F.-H. Xu, and H.-F. Lu, 2013: ATOP—The Advanced Taiwan Ocean Prediction System based on the mpiPOM. Part 1: Model descriptions, analyses and results. Terr. Atmos. Oceanic Sci., 24, 137158, doi:10.3319/TAO.2012.09.12.01(Oc).

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y.Y.-L. Chang, Y.-C. Lin, M.-C. Chang, S. Varlamov, and Y. Miyazawa, 2014: Cross flows in the Taiwan Strait in winter. J. Phys. Oceanogr., 44, 801817, doi:10.1175/JPO-D-13-0128.1.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1982: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Pennelly, C., G. Reuter, and T. Flesch, 2014: Verification of the WRF model for simulating heavy precipitation in Alberta. Atmos. Res., 135136, 172192, doi:10.1016/j.atmosres.2013.09.004.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and C. W. Landsea, 1999: La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Amer. Meteor. Soc., 80, 20272033, doi:10.1175/1520-0477(1999)080<2027:LNAENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, doi:10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., Y. J. Yang, and F. L. Bahr, 2010: Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes Geophys., 17, 481498, doi:10.5194/npg-17-481-2010.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395–419, doi:10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1992: Nonlinear balance and potential-vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118, 9871015, doi:10.1002/qj.49711850708.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and L. Carrillo, 2011: The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, doi:10.5194/acp-11-147-2011.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1963: Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci., 20, 276287, doi:10.1175/1520-0469(1963)020<0276:SRBWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., T. Vukicevic, and B. Tang, 2014: Adopting model uncertainties for tropical cyclone intensity prediction. Mon. Wea. Rev., 142, 72–78, doi:10.1175/MWR-D-13-00186.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2006: The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537, doi:10.1175/BAMS-87-11-1523.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., S. A. Hausman, M. Garcia, K. V. Ooyama, and H. C. Kuo, 2001: Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 31483157, doi:10.1175/1520-0469(2001)058<3148:PVIAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., E. Ruprecht, R. Hertenstein, R. Ferreira, R. Taft, C. Rozoff, P. Ciesielski, and H.-C. Kuo, 2004: English translations of twenty-one of Ertel’s papers on geophysical fluid dynamics. Meteor. Z., 13, 527576, doi: 10.1127/0941-2948/2004/0013-0527.

    • Search Google Scholar
    • Export Citation
  • Shu, Y., D. Wang, J. Zhu, and S. Peng, 2011: The 4-D structure of upwelling and Pearl River plume in the northern South China Sea during summer 2008 revealed by a data assimilation model. Ocean Modell., 36, 228241, doi:10.1016/j.ocemod.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity–based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Y. Oey, R. Chang, F. Xu, and S. M. Huang, 2015: Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea. Ocean Dyn., 65, 735749, doi:10.1007/s10236-015-0823-0.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., J. J. Shi, S. S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. P. Lidard, and A. Hou, 2011: The impact of microphysical schemes on hurricane intensity and track. Asia-Pac. J. Atmos. Sci., 47, 116, doi:10.1007/s13143-011-1001-z.

    • Search Google Scholar
    • Export Citation
  • Wang, D. P., and L. Y. Oey, 2008: Hindcast of waves and currents in Hurricane Katrina. Bull. Amer. Meteor. Soc., 89, 487495, doi:10.1175/BAMS-89-4-487.

    • Search Google Scholar
    • Export Citation
  • Wang, D., W. Zhuang, S.-P. Xie, J. Hu, Y. Shu, and R. Wu, 2012: Coastal upwelling in summer 2000 in the northeastern South China Sea. J. Geophys. Res., 117, C04009, doi:10.1029/2011JC007465.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252278, doi:10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 30223036, doi:10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332, doi:10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, doi:10.1126/science.288.5467.847.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41, 11691186, doi:10.1175/1520-0469(1984)041<1169:HSAEAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, F.-H., and L.-Y. Oey, 2014: State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn., 64, 905923, doi:10.1007/s10236-014-0720-y.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831–1852, doi:10.1175/2010JAS3387.1.

    • Search Google Scholar
    • Export Citation
  • Yin, X. Q., and L. Y. Oey, 2007: Bred-ensemble ocean forecast of Loop Current and rings. Ocean Modell., 17, 300326, doi:10.1016/j.ocemod.2007.02.005.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Y. Wang, and C.-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 38–59, doi:10.1175/MWR3278.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., and C. Q. Kieu, 2005: Shear-forced vertical circulations in tropical cyclones. Geophys. Res. Lett., 32, L13822, doi:10.1029/2005GL023146.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105–2125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., D.-L. Tang, and Y. Wang, 2008: Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea. Mar. Ecol. Prog. Ser., 365, 5765, doi:10.3354/meps07488.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109–126, doi:10.1175/JAS3599.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 922 221 18
PDF Downloads 316 72 6