• Anderson, M. E., , L. D. Carey, , W. A. Petersen, , and K. R. Knupp, 2011: C-band dual-polarimetric radar signatures of hail. Electron. J. Oper. Meteor., 12 (2), 130.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , R. C. Srivastava, , and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1992: Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms. Atmos. Res., 28, 125152, doi:10.1016/0169-8095(92)90024-5.

    • Search Google Scholar
    • Export Citation
  • Berezinski, N. A., , G. V. Stepanov, , and V. G. Khorguani, 1988: Ice forming activity of atmospheric aerosol particles of different sizes. Atmospheric Aerosols and Nucleation, P. E. Wagner and G. Vali, Eds., Springer, 233–249.

  • Blanchard, D. C., 1951: A verification of the Bally-Dorsey theory of spicule formation on sleet pellet events. J. Meteor., 8, 268269.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1957: The supercooling, freezing and melting of giant waterdrops at terminal velocity in air. Artificial Stimulation of Rain, H. K. Weickmann and W. Smith, Eds., Pergamon Press, 233–245.

  • Bohren, C., , and B. Albrecht, 1998: Atmospheric Thermodynamics.Oxford University Press, 403 pp.

  • Bringi, V. N., , and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Brooks, C., 1920: The nature of sleet and how it is formed. Mon. Wea. Rev., 48, 6972, doi:10.1175/1520-0493(1920)48<69b:TNOSAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brownscombe, J. L., , and N. S. C. Thorndike, 1968: Freezing and shattering of water droplets in free fall. Nature, 220, 687689, doi:10.1038/220687a0.

    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., 2000: A climatology of freezing rain in the Great Lakes region of North America. Mon. Wea. Rev., 128, 35743588, doi:10.1175/1520-0493(2001)129<3574:ACOFRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., , B. C. Bernstein, , C. C. Robbins, , and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, doi:10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crawford, R. W., , and R. E. Stewart, 1995: Precipitation type characteristics at the surface in winter storms. Cold Reg. Sci. Technol., 23, 215229, doi:10.1016/0165-232X(94)00014-O.

    • Search Google Scholar
    • Export Citation
  • Dorsey, N. E., 1948: The freezing of supercooled water. Trans. Amer. Philos. Soc., 38, 247328, doi:10.2307/1005602.

  • Dye, J. E., , and P. V. Hobbs, 1968: The influence of environmental parameters on the freezing and fragmentation of suspended water drops. J. Atmos. Sci., 25, 8296, doi:10.1175/1520-0469(1968)025<0082:TIOEPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edwards, G. R., , and L. F. Evans, 1971: Mechanism of activation of ice nuclei. J. Atmos. Sci., 28, 14431447, doi:10.1175/1520-0469(1971)028<1443:TMOAOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., , T. W. Wu, , B. D. Chen, , J. Wang, , and Y. Liu, 2013: A numerical simulation of microphysical structure of cloud associated with the 2008 winter freezing rain over southern China. J. Meteor. Soc. Japan, 91, 101117, doi:10.2151/jmsj.2013-202.

    • Search Google Scholar
    • Export Citation
  • Gibson, S., , and R. E. Stewart, 2007: Observations of ice pellets during a winter storm. Atmos. Res., 85, 6476, doi:10.1016/j.atmosres.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Gibson, S., , R. E. Stewart, , and W. Henson, 2009: On the variation of ice pellet characteristics. J. Geophys. Res., 114, D09207, doi:10.1029/2008JD011260.

    • Search Google Scholar
    • Export Citation
  • Gokhale, N. R., , and O. Lewinter, 1971: Microcinematographic studies of contact nucleation. J. Appl. Meteor., 10, 469473, doi:10.1175/1520-0450(1971)010<0469:MSOCN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gokhale, N. R., , and J. D. Spengler, 1972: Freezing of freely suspended, supercooled water drops by contact nucleation. J. Appl. Meteor., 11, 157160, doi:10.1175/1520-0450(1972)011<0157:FOFSSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanesiak, J. M., , and R. E. Stewart, 1995: The mesoscale and microscale structure of a severe ice pellet storm. Mon. Wea. Rev., 123, 31443162, doi:10.1175/1520-0493(1995)123<3144:TMAMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., , and R. Wright, 2014: Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply? J. Atmos. Soc., 71, 33923403, doi:10.1175/JAS-D-14-0034.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. A., , and J. Hallett, 1968: Freezing and shattering of supercooled water drops. Quart. J. Roy. Meteor. Soc., 94, 468482, doi:10.1002/qj.49709440204.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., , and A. E. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, doi:10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , and A. D. Schenkman, 2014: The curious case of ice pellets over middle Tennessee on 1 March 2014. J. Oper. Meteor., 2, 209213, doi:10.15191/nwajom.2014.0217.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , S. M. Ganson, , and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Soc., 69, 34713490, doi:10.1175/JAS-D-12-067.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , A. V. Ryzhkov, , J. D. Reeves, , and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, doi:10.1175/JAMC-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
  • List, R., , and R. S. Schemenauer, 1971: Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Soc., 28, 110115, doi:10.1175/1520-0469(1971)028<0110:FFBOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martinez, A. T., 1994: On the evaluation of the wet bulb temperature as a function of dry bulb temperature and relative humidity. Atmósfera, 7, 179184.

    • Search Google Scholar
    • Export Citation
  • Matsukawa, T., 1923: Frozen rain drops at Sapporo. J. Meteor. Soc. Japan, 1, 9597.

  • Matsuo, T., , and Y. Sasyo, 1981a: Empirical formula for the melting rate of snowflakes. J. Meteor. Soc. Japan, 59, 19.

  • Matsuo, T., , and Y. Sasyo, 1981b: Melting of snowflakes below freezing level in the atmosphere. J. Meteor. Soc. Japan, 59, 1025.

  • Matsushita, H., , and F. Nishino, 2008: A simple method of discriminating between occurrences of freezing rain and ice pellets in the Kanto plain, Japan. J. Meteor. Soc. Japan, 86, 633648, doi:10.2151/jmsj.86.633.

    • Search Google Scholar
    • Export Citation
  • Mikhailov, M. D., , and A. P. Silva Freire, 2013: The drag coefficient of a sphere: An approximation using Shanks transform. Powder Technol., 237, 432435, doi:10.1016/j.powtec.2012.12.033.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., , R. E. Ruskin, , and K. J. Heffernan, 1968: Glaciation of a cumulus at approximately −4 °C. J. Atmos. Sci., 25, 889905, doi:10.1175/1520-0469(1968)025<0889:GOACAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., , and H. R. Pruppacher, 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 99, 540550, doi:10.1002/qj.49709942111.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., 1967: Interpretation of experimentally determined growth rates of ice crystals in supercooled water. J. Chem. Phys., 47, 18071813, doi:10.1063/1.1712169.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and R. J. Schlamp, 1975: A wind tunnel investigation on ice multiplication by freezing of waterdrops falling at terminal velocity in air. J. Geophys. Res., 80, 380386, doi:10.1029/JC080i003p00380.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation.Kluwer Academic, 954 pp.

  • Rasmussen, R. M., , and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Soc., 44, 27542763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , H. D. Reeves, , T. J. Schuur, , M. R. Kumjian, , and D. S. Zrnic, 2011: Investigations of polarimetric radar signatures in winter storms and their relation to aircraft icing and freezing rain. Proc. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 197. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191245.html.]

  • Sassen, K., , P. J. DeMott, , J. M. Prospero, , and M. R. Poellot, 2003: Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30, 1633, doi:10.1029/2003GL017371.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., , and A. J. Heymsfield, 2014: Observational quantification of the separation of simple and complex atmospheric ice particles. Geophys. Res. Lett., 41, 13011307, doi:10.1002/2013GL058781.

    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., , G. Lammer, , and W. L. Randeu, 2007: One decade of imaging precipitation measurement by 2d-video-disdrometer. Adv. Geosci., 10, 8590, doi:10.5194/adgeo-10-85-2007.

    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., , G. Lammer, , and W. L. Randeu, 2008: The 2D-videodisdrometer. precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 3–31.

  • Selberg, B. P., , and J. A. Nicholls, 1968: Drag coefficient of small spherical particles. AIAA J., 6, 401408, doi:10.2514/3.4513.

  • Spengler, J. D., , and N. R. Gokhale, 1972: Freezing of freely suspended supercooled water drops in a large vertical wind tunnel. J. Appl. Meteor., 11, 11011107, doi:10.1175/1520-0450(1972)011<1101:FOFSSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., , and P. King, 1987: Freezing precipitation in winter storms. Mon. Wea. Rev., 115, 12701279, doi:10.1175/1520-0493(1987)115<1270:FPIWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., , and R. W. Crawford, 1995: Some characteristics of the precipitation formed within winter storms over eastern Newfoundland. Atmos. Res., 36, 1737, doi:10.1016/0169-8095(94)00004-W.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., 2009: Cloud and Precipitation Microphysics.Cambridge University Press, 406 pp.

  • Takahashi, C., 1975: Deformation of frozen drops and their frequencies. J. Meteor. Soc. Japan, 53, 402411.

  • Takahashi, C., , and A. Yamashita, 1969: Deformation and fragmentation of freezing water drops in free fall. J. Meteor. Soc. Japan, 47, 431436.

    • Search Google Scholar
    • Export Citation
  • Takahashi, C., , and A. Yamashita, 1970: Shattering of frozen water drops in a supercooled cloud. J. Meteor. Soc. Japan, 48, 373376.

  • Thériault, J. M., , and R. E. Stewart, 2010: A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci., 67, 14921508, doi:10.1175/2009JAS3224.1.

    • Search Google Scholar
    • Export Citation
  • Watts, R. G., 1971: Relaxation time and steady evaporation rate of freely falling raindrops. J. Atmos. Sci., 28, 219225, doi:10.1175/1520-0469(1971)028<0219:RTASER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, L. C., , and W. B. Good, 1966: Crystallization rate of supercooled water in cylindrical tubes. J. Geophys. Res., 71, 24652469, doi:10.1029/JZ071i010p02465.

    • Search Google Scholar
    • Export Citation
  • Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 16471661, doi:10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., , S. Luchs, , A. Ryzhkov, , M. Xue, , L. Ryzhkova, , and Q. Cao, 2011: Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma. J. Appl. Meteor. Climatol., 50, 15581570, doi:10.1175/2011JAMC2343.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 59 9
PDF Downloads 37 37 10

Microphysical Properties of Slow-Falling and Fast-Falling Ice Pellets Formed by Freezing Associated with Evaporative Cooling

View More View Less
  • 1 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan
  • | 2 Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
© Get Permissions
Restricted access

Abstract

This paper describes a numerical and observational study focused on ice-pellet formation and microphysical properties near 0°C from an ice-pellet-dominated storm associated with an unusually warm and dry atmosphere on 10 April 2005, in Sapporo, Japan. A one-dimensional numerical model simulation indicated that precipitation particle temperatures were sensitive to environmental temperature and relative humidity and close to the wet-bulb temperature. The simulation demonstrated that completely melted snowflakes could refreeze by evaporative cooling. Moreover, initial freezing could be explained by contact ice nucleation at the height of the minimum wet-bulb temperature.

Observations using a 2D video distrometer (2DVD) indicated that ice pellets exhibited two modes of fall velocities at surface temperatures near 0°C during the same time period: slow falling and fast falling. The slow-falling ice pellets exhibited a velocity similar to the average terminal velocity of hail, whereas the velocities of the fast-falling ice pellets were closer to those of raindrops. Surface roundness and fracturing characteristics of ice pellets suggest that slow-falling ice pellets froze rapidly and uniformly in a relatively cold dry layer with a wet-bulb temperature near −4°C. In contrast, the fast-falling ice pellets exhibited the properties of ice particles with a wet smooth surface, suggesting that they froze slowly in a relatively warm layer by contacting ice crystals or splinters generated by preceding slow-falling ice pellets.

Corresponding author address: Nobuhiro Nagumo, Dept. of Meteorological Satellite and Observation System Research, Meteorological Research Institute, 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: nagumo@mri-jma.go.jp

Abstract

This paper describes a numerical and observational study focused on ice-pellet formation and microphysical properties near 0°C from an ice-pellet-dominated storm associated with an unusually warm and dry atmosphere on 10 April 2005, in Sapporo, Japan. A one-dimensional numerical model simulation indicated that precipitation particle temperatures were sensitive to environmental temperature and relative humidity and close to the wet-bulb temperature. The simulation demonstrated that completely melted snowflakes could refreeze by evaporative cooling. Moreover, initial freezing could be explained by contact ice nucleation at the height of the minimum wet-bulb temperature.

Observations using a 2D video distrometer (2DVD) indicated that ice pellets exhibited two modes of fall velocities at surface temperatures near 0°C during the same time period: slow falling and fast falling. The slow-falling ice pellets exhibited a velocity similar to the average terminal velocity of hail, whereas the velocities of the fast-falling ice pellets were closer to those of raindrops. Surface roundness and fracturing characteristics of ice pellets suggest that slow-falling ice pellets froze rapidly and uniformly in a relatively cold dry layer with a wet-bulb temperature near −4°C. In contrast, the fast-falling ice pellets exhibited the properties of ice particles with a wet smooth surface, suggesting that they froze slowly in a relatively warm layer by contacting ice crystals or splinters generated by preceding slow-falling ice pellets.

Corresponding author address: Nobuhiro Nagumo, Dept. of Meteorological Satellite and Observation System Research, Meteorological Research Institute, 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: nagumo@mri-jma.go.jp
Save