Statistical Postprocessing of Ensemble Precipitation Forecasts by Fitting Censored, Shifted Gamma Distributions

Michael Scheuerer University of Colorado, Cooperative Institute for Research in Environmental Sciences, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael Scheuerer in
Current site
Google Scholar
PubMed
Close
and
Thomas M. Hamill Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Thomas M. Hamill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A parametric statistical postprocessing method is presented that transforms raw (and frequently biased) ensemble forecasts from the Global Ensemble Forecast System (GEFS) into reliable predictive probability distributions for precipitation accumulations. Exploratory analysis based on 12 years of reforecast data and ⅛° climatology-calibrated precipitation analyses shows that censored, shifted gamma distributions can well approximate the conditional distribution of observed precipitation accumulations given the ensemble forecasts. A nonhomogeneous regression model is set up to link the parameters of this distribution to ensemble statistics that summarize the mean and spread of predicted precipitation amounts within a certain neighborhood of the location of interest, and in addition the predicted mean of precipitable water. The proposed method is demonstrated with precipitation reforecasts over the conterminous United States using common metrics such as Brier skill scores and reliability diagrams. It yields probabilistic forecasts that are reliable, highly skillful, and sharper than the previously demonstrated analog procedure. In situations with limited predictability, increasing the size of the neighborhood within which ensemble forecasts are considered as predictors can further improve forecast skill. It is found, however, that even a parametric postprocessing approach crucially relies on the availability of a sufficiently large training dataset.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0061.s1.

Corresponding author address: Dr. Michael Scheuerer, Physical Sciences Division, NOAA/ESRL, 325 Broadway, R/PSD1, Boulder, CO 80305-3337. E-mail: michael.scheuerer@noaa.gov

Abstract

A parametric statistical postprocessing method is presented that transforms raw (and frequently biased) ensemble forecasts from the Global Ensemble Forecast System (GEFS) into reliable predictive probability distributions for precipitation accumulations. Exploratory analysis based on 12 years of reforecast data and ⅛° climatology-calibrated precipitation analyses shows that censored, shifted gamma distributions can well approximate the conditional distribution of observed precipitation accumulations given the ensemble forecasts. A nonhomogeneous regression model is set up to link the parameters of this distribution to ensemble statistics that summarize the mean and spread of predicted precipitation amounts within a certain neighborhood of the location of interest, and in addition the predicted mean of precipitable water. The proposed method is demonstrated with precipitation reforecasts over the conterminous United States using common metrics such as Brier skill scores and reliability diagrams. It yields probabilistic forecasts that are reliable, highly skillful, and sharper than the previously demonstrated analog procedure. In situations with limited predictability, increasing the size of the neighborhood within which ensemble forecasts are considered as predictors can further improve forecast skill. It is found, however, that even a parametric postprocessing approach crucially relies on the availability of a sufficiently large training dataset.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0061.s1.

Corresponding author address: Dr. Michael Scheuerer, Physical Sciences Division, NOAA/ESRL, 325 Broadway, R/PSD1, Boulder, CO 80305-3337. E-mail: michael.scheuerer@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 270.20 KB)
Save
  • Ben Bouallègue, Z., 2013: Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms. Wea. Forecasting, 28, 515524, doi:10.1175/WAF-D-12-00062.1.

    • Search Google Scholar
    • Export Citation
  • Bentzien, S., and P. Friederichs, 2012: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE. Wea. Forecasting, 27, 9881002, doi:10.1175/WAF-D-11-00101.1.

    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 18771901, doi:10.1175/2009MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, doi:10.1175/MWR3237.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, doi:10.1175/2007MWR2411.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Wea. Rev., 143, 33003309, doi:10.1175/MWR-D-15-0004.1.

    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, doi:10.1175/JHM-D-11-0140.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble prediction. Mon. Wea. Rev., 123, 21812196, doi:10.1175/1520-0493(1995)123<2181:MFEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Messner, J. W., and G. J. Mayr, 2014: Heteroscedastic extended logistic regression for postprocessing of ensemble guidance. Mon. Wea. Rev., 142, 448456, doi:10.1175/MWR-D-13-00271.1.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, doi:10.1002/qj.49712252905.

    • Search Google Scholar
    • Export Citation
  • Powell, M. J. D., 2014: On fast trust region methods for quadratic models with linear constraints. Tech. Rep. DAMTP 2014/NA02, Department of Applied Mathematics and Theoretical Physics, Cambridge University, 31 pp. [Available online at http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2014_02.pdf.]

  • Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 10861096, doi:10.1002/qj.2183.

    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., and K. J. Kok, 2010: A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Mon. Wea. Rev., 138, 41994211, doi:10.1175/2010MWR3285.1.

    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M., A. E. Raftery, T. Gneiting, and C. Fraley, 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 32093220, doi:10.1175/MWR3441.1.

    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., T. Gneiting, and N. Gissibl, 2013: Using proper divergence functions to evaluate climate models. SIAM/ASA J. Uncertainty Quantif., 1, 522534, doi:10.1137/130907550.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, doi:10.1002/met.134.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Elsevier Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, doi:10.1175/MWR3402.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2833 859 68
PDF Downloads 2348 704 73