Origin and Impact of Initialization Shocks in Coupled Atmosphere–Ocean Forecasts

David P. Mulholland Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by David P. Mulholland in
Current site
Google Scholar
PubMed
Close
,
Patrick Laloyaux European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Patrick Laloyaux in
Current site
Google Scholar
PubMed
Close
,
Keith Haines Department of Meteorology, and National Centre for Earth Observation, University of Reading, Reading, United Kingdom

Search for other papers by Keith Haines in
Current site
Google Scholar
PubMed
Close
, and
Magdalena Alonso Balmaseda European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Magdalena Alonso Balmaseda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Current methods for initializing coupled atmosphere–ocean forecasts often rely on the use of separate atmosphere and ocean analyses, the combination of which can leave the coupled system imbalanced at the beginning of the forecast, potentially accelerating the development of errors. Using a series of experiments with the European Centre for Medium-Range Weather Forecasts coupled system, the magnitude and extent of these so-called initialization shocks is quantified, and their impact on forecast skill measured. It is found that forecasts initialized by separate oceanic and atmospheric analyses do exhibit initialization shocks in lower atmospheric temperature, when compared to forecasts initialized using a coupled data assimilation method. These shocks result in as much as a doubling of root-mean-square error on the first day of the forecast in some regions, and in increases that are sustained for the duration of the 10-day forecasts performed here. However, the impacts of this choice of initialization on forecast skill, assessed using independent datasets, were found to be negligible, at least over the limited period studied. Larger initialization shocks are found to follow a change in either the atmosphere or ocean model component between the analysis and forecast phases: changes in the ocean component can lead to sea surface temperature shocks of more than 0.5 K in some equatorial regions during the first day of the forecast. Implications for the development of coupled forecast systems, particularly with respect to coupled data assimilation methods, are discussed.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0076.s1.

Corresponding author address: David Mulholland, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: d.p.mulholland@reading.ac.uk

Abstract

Current methods for initializing coupled atmosphere–ocean forecasts often rely on the use of separate atmosphere and ocean analyses, the combination of which can leave the coupled system imbalanced at the beginning of the forecast, potentially accelerating the development of errors. Using a series of experiments with the European Centre for Medium-Range Weather Forecasts coupled system, the magnitude and extent of these so-called initialization shocks is quantified, and their impact on forecast skill measured. It is found that forecasts initialized by separate oceanic and atmospheric analyses do exhibit initialization shocks in lower atmospheric temperature, when compared to forecasts initialized using a coupled data assimilation method. These shocks result in as much as a doubling of root-mean-square error on the first day of the forecast in some regions, and in increases that are sustained for the duration of the 10-day forecasts performed here. However, the impacts of this choice of initialization on forecast skill, assessed using independent datasets, were found to be negligible, at least over the limited period studied. Larger initialization shocks are found to follow a change in either the atmosphere or ocean model component between the analysis and forecast phases: changes in the ocean component can lead to sea surface temperature shocks of more than 0.5 K in some equatorial regions during the first day of the forecast. Implications for the development of coupled forecast systems, particularly with respect to coupled data assimilation methods, are discussed.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0076.s1.

Corresponding author address: David Mulholland, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: d.p.mulholland@reading.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 2.53 MB)
Save
  • Alessandri, A., A. Borrelli, S. Masina, A. Cherchi, S. Gualdi, A. Navarra, P. Di Pietro, and A. F. Carril, 2010: The INGV-CMCC seasonal prediction system: Improved ocean initial conditions. Mon. Wea. Rev., 138, 29302952, doi:10.1175/2010MWR3178.1.

    • Search Google Scholar
    • Export Citation
  • Alves, O., Y. Yin, L. Shi, R. Wedd, D. Hudson, P. Okely, and H. Hendon, 2014: A coupled ensemble ocean data assimilation system for seasonal prediction and its comparison with other state-of-the-art systems. EGU General Assembly Conf., Vol. 16, Geophysical Research Abstracts EGU2014-9487. [Available online at http://meetingorganizer.copernicus.org/EGU2014/EGU2014-9487.pdf.]

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., J. Sheinbaum, and K. Haines, 1996: Data assimilation in ocean models. Rep. Prog. Phys., 59, 1209, doi:10.1088/0034-4885/59/10/001.

    • Search Google Scholar
    • Export Citation
  • Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 18911910, doi:10.1175/2010MWR3615.1.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, doi:10.1029/2008GL035561.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., D. Dee, A. Vidard, and D. L. T. Anderson, 2007: A multivariate treatment of bias for sequential data assimilation: Application to the tropical oceans. Quart. J. Roy. Meteor. Soc., 133, 167179, doi:10.1002/qj.12.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and Coauthors, 2009: Ocean initialization for seasonal forecasts. Oceanography, 22, 154–159, doi:10.5670/oceanog.2009.73.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Bell, M. J., M. J. Martin, and N. K. Nichols, 2004: Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteor. Soc., 130, 873893, doi:10.1256/qj.02.109.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1993: Atmospheric Data Analysis. Cambridge University Press, 472 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64, 157174, doi:10.1175/JAS3830.1.

    • Search Google Scholar
    • Export Citation
  • Gemmill, W., B. Katz, and X. Li, 2007: Daily real-time global sea surface temperature—High resolution analysis at NOAA/NCEP. Tech. Rep., NOAA/NWS/NCEP/MMAB Office Note 260, 39 pp.

  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, doi:10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hudson, D., O. Alves, H. H. Hendon, and G. Wang, 2011: The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dyn., 36, 11551171, doi:10.1007/s00382-010-0763-9.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and R. F. Adler, 2012: GPCP version 1.2 1-Degree Daily (1DD) precipitation data set. WDC-A, NCDC, Asheville, NC, NASA/GSFC, accessed June 2014. [Available online at http://precip.gsfc.nasa.gov.]

  • Janssen, P., and Coauthors, 2013: Air-sea interaction and surface waves. Tech. Memo. 712, ECMWF, 34 pp.

  • Klingaman, N. P., P. M. Inness, H. Weller, and J. M. Slingo, 2008: The importance of high-frequency sea surface temperature variability to the intraseasonal oscillation of Indian monsoon rainfall. J. Climate, 21, 61196140, doi:10.1175/2008JCLI2329.1.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2015: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2629, in press.

  • Lea, D., I. Mirouze, R. King, M. Martin, and A. Hines, 2015: The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System. EGU General Assembly Conf., Vol. 17, Geophysical Research Abstracts EGU2015-5801. [Available online at http://meetingorganizer.copernicus.org/EGU2015/EGU2015-5801.pdf.]

  • MacLachlan, C., and Coauthors, 2015: Global Seasonal Forecast System version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084, doi:10.1002/qj.2396.

  • Magnusson, L., M. Alonso-Balmaseda, S. Corti, F. Molteni, and T. Stockdale, 2013: Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate Dyn., 41, 23932409, doi:10.1007/s00382-012-1599-2.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., D. Hudson, M. C. Wheeler, H. H. Hendon, and O. Alves, 2011: Assessing the simulation and prediction of rainfall associated with the MJO in the POAMA seasonal forecast system. Climate Dyn., 37, 21292141, doi:10.1007/s00382-010-0948-2.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). European Centre for Medium-Range Weather Forecasts Tech. Memo. 656, 49 pp.

  • Rahmstorf, S., 1995: Climate drift in an ocean model coupled to a simple, perfectly matched atmosphere. Climate Dyn., 11, 447458, doi:10.1007/BF00207194.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Shelly, A., P. Xavier, D. Copsey, T. Johns, J. M. Rodríguez, S. Milton, and N. Klingaman, 2014: Coupled versus uncoupled hindcast simulations of the Madden-Julian Oscillation in the Year of Tropical Convection. Geophys. Res. Lett., 41, 56705677, doi:10.1002/2013GL059062.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, doi:10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Stark, J. D., C. J. Donlon, M. J. Martin, and M. E. McCulloch, 2007: OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. Extended Abstracts, OCEANS 2007: Marine Challenges: Coastline to Deep Sea, Aberdeen, Scotland, IEEE, 1-4, doi:10.1109/OCEANSE.2007.4302251.

  • Vitart, F., and Coauthors, 2008: The new VAREPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799, doi:10.1002/qj.322.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., 2011: A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a simple pycnocline prediction model. J. Climate, 24, 62106226, doi:10.1175/JCLI-D-10-05003.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, doi:10.1175/MWR3466.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1048 361 26
PDF Downloads 590 169 14