• Alcott, T. I., , and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, doi:10.1175/MWR-D-12-00328.1.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1965: On the low-level redistribution of atmospheric water caused by orography. Proc. Int. Cloud Physics, Tokyo, Japan, Amer. Meteor. Soc., 96–100.

  • Biggerstaff, M., , and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, doi:10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., , T. A. Niziol, , N. R. Donaldson, , P. I. Joe, , and V. T. Wood, 2007: Improved detection using negative elevation angles for mountaintop WSR-88Ds. Part III: Simulations of shallow convective activity over and around Lake Ontario. Wea. Forecasting, 22, 839852, doi:10.1175/WAF1019.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , F. F. Hill, , and C. W. Pardoe, 1974: Structure and mechanism of precipitation and effect of orography in a wintertime warm sector. Quart. J. Roy. Meteor. Soc., 100, 309330, doi:10.1002/qj.49710042505.

    • Search Google Scholar
    • Export Citation
  • Burt, C. C., 2007: Extreme Weather: A Guide and Record Book. W. W. Norton & Company, 320 pp.

  • Cannon, D. J., , D. J. Kirshbaum, , and S. L. Gray, 2012: Under what conditions does embedded convection enhance orographic precipitation? Quart. J. Roy. Meteor. Soc., 138, 391406, doi:10.1002/qj.926.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , Y. Lin, , S. Medina, , and B. F. Smull, 2008: Orographic modification of convection and flow kinematics by the Oregon Coast Range and Cascades during IMPROVE-2. Mon. Wea. Rev., 136, 38943916, doi:10.1175/2008MWR2369.1.

    • Search Google Scholar
    • Export Citation
  • Eichenlaub, V. L., , and T. W. Hodler, 1979: Weather and Climate of the Great Lakes Region. University of Notre Dame Press, 335 pp.

  • Hartnett, J. J., , J. M. Collins, , M. A. Baxter, , and D. P. Chambers, 2014: Spatiotemporal snowfall trends in central New York. J. Appl. Meteor. Climatol., 53, 26852697, doi:10.1175/JAMC-D-14-0084.1.

    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138150, doi:10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1992: Orographic effects in simulated lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 120, 373377, doi:10.1175/1520-0493(1992)120<0373:OEISLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., , and R. R. Braham Jr., 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, doi:10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W. I., 1971: Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci., 28, 11651170, doi:10.1175/1520-0469(1971)028<1165:LECBAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed., International Geophysics Series, Vol. 53, Academic Press, 573 pp.

  • Kirshbaum, D. J., , and R. B. Smith, 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134, 11831199, doi:10.1002/qj.274.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., , and R. B. Smith, 2009: Orographic precipitation in the tropics: Large-eddy simulations and theory. J. Atmos. Sci., 66, 25592578, doi:10.1175/2009JAS2990.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., , and A. Grant, 2012: Invigoration of cumulus cloud fields by mesoscale ascent. Quart. J. Roy. Meteor. Soc., 138, 21362150, doi:10.1002/qj.1954.

    • Search Google Scholar
    • Export Citation
  • Klugmann, D., , K. Heinsohn, , and H.-J. Kirtzel, 1996: A low cost 24 GHz FM-CW Doppler radar rain profiler. Contrib. Atmos. Phys., 69, 247253.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., 2014: Tighten your snow belt—New efforts to understand lake-effect storms in the eastern Great Lakes. 16th Conf. on Mountain Meteorology, Amer. Meteor. Soc., 8.1. [Availible online at: https://ams.confex.com/ams/16MountMet/webprogram/Paper252116.html.]

  • Kristovich, D. A. R., , and R. A. Steve, 1995: A satellite study of cloud-band frequencies over the Great Lakes. J. Appl. Meteor., 34, 20832090, doi:10.1175/1520-0450(1995)034<2083:ASSOCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 360 pp.

  • Laird, N. F., , and D. A. Kristovich, 2004: Comparison of observations with idealized model results for a method to resolve winter lake-effect mesoscale morphology. Mon. Wea. Rev., 132, 10931103, doi:10.1175/1520-0493(2004)132<1093:COOWIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., , D. A. Kristovich, , and J. E. Walsh, 2003a: Idealized model simulations examining the mesoscale structure of winter lake-effect circulations. Mon. Wea. Rev., 131, 206221, doi:10.1175/1520-0493(2003)131<0206:IMSETM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., , J. E. Walsh, , and D. A. Kristovich, 2003b: Model simulations examining the relationship of lake-effect morphology to lake shape, wind direction, and wind speed. Mon. Wea. Rev., 131, 21022111, doi:10.1175/1520-0493(2003)131<2102:MSETRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavoie, R. L., 1972: A mesoscale numerical model of lake-effect storms. J. Atmos. Sci., 29, 10251040, doi:10.1175/1520-0469(1972)029<1025:AMNMOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., , and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., , M. Kunz, , and W. Schmid, 1999: On the performance of a low-cost K-band Doppler radar for quantitative rain measurements. J. Atmos. Oceanic Technol., 16, 379387, doi:10.1175/1520-0426(1999)016<0379:OTPOAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maahn, M., , and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech. Discuss., 5, 47714808, doi:10.5194/amtd-5-4771-2012.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30, 454461, doi:10.1109/36.142923.

  • Minder, J. R., , R. B. Smith, , and A. D. Nugent, 2013: The dynamics of ascent-forced orographic convection in the tropics: Results from Dominica. J. Atmos. Sci., 70, 40674088, doi:10.1175/JAS-D-13-016.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., , T. Clark, , and W. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan: 2-dimensional simulations of mixed-layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 4362.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., , W. R. Snyder, , and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, doi:10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Onton, D. J., , and W. J. Steenburgh, 2001: Diagnostic and sensitivity studies of the 7 December 1998 Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 129, 13181338, doi:10.1175/1520-0493(2001)129<1318:DASSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., Jr., , and R. R. Braham Jr., 1981: The role of the winter land breeze in the formation of Great Lake snow storms. Bull. Amer. Meteor. Soc., 62, 482492, doi:10.1175/1520-0477(1981)062<0482:TROTWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peace, R., Jr., , and R. Sykes Jr., 1966: Mesoscale study of a lake effect snow storm. Mon. Wea. Rev., 94, 495507, doi:10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, G., , B. Fischer, , and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353362.

    • Search Google Scholar
    • Export Citation
  • Phillips, D. W., 2009: UAHuntsville X-Band Profiling Radar (XPR). 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 11.7. [Available online at https://ams.confex.com/ams/34Radar/techprogram/paper_155613.htm.]

  • Rasmussen, R. M., , J. Hallett, , R. Purcell, , S. D. Landolt, , and J. Cole, 2011: The hotplate precipitation gauge. J. Atmos. Oceanic Technol., 28, 148164, doi:10.1175/2010JTECHA1375.1.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., and et al. , 1993: The Lake Ontario Winter Storms (LOWS) project. Bull. Amer. Meteor. Soc., 74, 18281828, doi:10.1175/1520-0477-74-10-1828.

    • Search Google Scholar
    • Export Citation
  • Saito, K., , M. Murakami, , T. Matsuo, , and H. Mizuno, 1996: Sensitivity experiments on the orographic snowfall over the mountainous region of northern Japan. J. Meteor. Soc. Japan, 74, 797813.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., , and R. J. Trapp, 2003: Nonclassical cold-frontal structure caused by dry subcloud air in northern Utah during the Intermountain Precipitation Experiment (IPEX). Mon. Wea. Rev., 131, 22222246, doi:10.1175/1520-0493(2003)131<2222:NCSCBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , P. Schafer, , D. J. Kirshbaum, , and E. Regina, 2009: Orographic precipitation in the tropics: Experiments in Dominica. J. Atmos. Sci., 66, 16981716, doi:10.1175/2008JAS2920.1.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., and et al. , 2013: Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel–lake-effect storms by the Doppler on Wheels. Mon. Wea. Rev., 141, 28212840, doi:10.1175/MWR-D-12-00226.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , and J. Simpson, 1989: Modeling study of a tropical squall-type convective line. J. Atmos. Sci., 46, 177202, doi:10.1175/1520-0469(1989)046<0177:MSOATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S., 2002: Investigation of a WSR-88D Z-R relation for snowfall in northern Utah. Extended Abstracts, 16th Conf. on Hydrology, Orlando, FL, Amer. Meteor. Soc., 3.18. [Available online at https://ams.confex.com/ams/annual2002/webprogram/Paper26411.html.]

  • Veals, P. G., , and W. J. Steenburgh, 2015: Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Mon. Wea. Rev., 143, 3591–3609, doi:10.1175/MWR-D-15-0009.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze Jr., 1995a: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze, Jr., 1995b: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev., 123, 19641983, doi:10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 177 177 8
PDF Downloads 132 132 8

The Evolution of Lake-Effect Convection during Landfall and Orographic Uplift as Observed by Profiling Radars

View More View Less
  • 1 University at Albany, State University of New York, Albany, New York
  • | 2 University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

A pronounced snowfall maximum occurs about 30 km downwind of Lake Ontario over the 600-m-high Tug Hill Plateau (hereafter Tug Hill), a region where lake-effect convection is affected by mesoscale forcing associated with landfall and orographic uplift. Profiling radar data from the Ontario Winter Lake-effect Systems field campaign are used to characterize the inland evolution of lake-effect convection that produces the Tug Hill snowfall maximum. Four K-band profiling Micro Rain Radars (MRRs) were aligned in a transect from the Ontario coast onto Tug Hill. Additional observations were provided by an X-band profiling radar (XPR). Analysis is presented of a major lake-effect storm that produced 6.4-cm liquid precipitation equivalent (LPE) snowfall over Tug Hill. This event exhibited strong inland enhancement, with LPE increasing by a factor of 1.9 over 15-km horizontal distance. MRR profiles reveal that this enhancement was not due to increases in the depth or intensity of lake-effect convection. With increasing inland distance, echoes transitioned from a convective toward a stratiform morphology, becoming less intense, more uniform, more frequent, and less turbulent. An inland increase in echo frequency (possibly orographically forced) contributes somewhat to snowfall enhancement. The XPR observations reproduce the basic vertical structure seen by the MRRs while also revealing a suppression of snowfall below 600 m AGL upwind of Tug Hill, possibly associated with subcloud sublimation or hydrometeor advection. Statistics from 29 events demonstrate that the above-described inland evolution of convection is common for lake-effect storms east of Lake Ontario.

Corresponding author address: Justin R. Minder, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222. E-mail: jminder@albany.edu

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

Abstract

A pronounced snowfall maximum occurs about 30 km downwind of Lake Ontario over the 600-m-high Tug Hill Plateau (hereafter Tug Hill), a region where lake-effect convection is affected by mesoscale forcing associated with landfall and orographic uplift. Profiling radar data from the Ontario Winter Lake-effect Systems field campaign are used to characterize the inland evolution of lake-effect convection that produces the Tug Hill snowfall maximum. Four K-band profiling Micro Rain Radars (MRRs) were aligned in a transect from the Ontario coast onto Tug Hill. Additional observations were provided by an X-band profiling radar (XPR). Analysis is presented of a major lake-effect storm that produced 6.4-cm liquid precipitation equivalent (LPE) snowfall over Tug Hill. This event exhibited strong inland enhancement, with LPE increasing by a factor of 1.9 over 15-km horizontal distance. MRR profiles reveal that this enhancement was not due to increases in the depth or intensity of lake-effect convection. With increasing inland distance, echoes transitioned from a convective toward a stratiform morphology, becoming less intense, more uniform, more frequent, and less turbulent. An inland increase in echo frequency (possibly orographically forced) contributes somewhat to snowfall enhancement. The XPR observations reproduce the basic vertical structure seen by the MRRs while also revealing a suppression of snowfall below 600 m AGL upwind of Tug Hill, possibly associated with subcloud sublimation or hydrometeor advection. Statistics from 29 events demonstrate that the above-described inland evolution of convection is common for lake-effect storms east of Lake Ontario.

Corresponding author address: Justin R. Minder, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222. E-mail: jminder@albany.edu

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

Save