Assessing a New Coupled Data Assimilation System Based on the Met Office Coupled Atmosphere–Land–Ocean–Sea Ice Model

D. J. Lea Met Office, Exeter, United Kingdom

Search for other papers by D. J. Lea in
Current site
Google Scholar
PubMed
Close
,
I. Mirouze Met Office, Exeter, United Kingdom

Search for other papers by I. Mirouze in
Current site
Google Scholar
PubMed
Close
,
M. J. Martin Met Office, Exeter, United Kingdom

Search for other papers by M. J. Martin in
Current site
Google Scholar
PubMed
Close
,
R. R. King Met Office, Exeter, United Kingdom

Search for other papers by R. R. King in
Current site
Google Scholar
PubMed
Close
,
A. Hines Met Office, Exeter, United Kingdom

Search for other papers by A. Hines in
Current site
Google Scholar
PubMed
Close
,
D. Walters Met Office, Exeter, United Kingdom

Search for other papers by D. Walters in
Current site
Google Scholar
PubMed
Close
, and
M. Thurlow Met Office, Exeter, United Kingdom

Search for other papers by M. Thurlow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new coupled data assimilation (DA) system developed with the aim of improving the initialization of coupled forecasts for various time ranges from short range out to seasonal is introduced. The implementation here is based on a “weakly” coupled data assimilation approach whereby the coupled model is used to provide background information for separate ocean–sea ice and atmosphere–land analyses. The increments generated from these separate analyses are then added back into the coupled model. This is different from the existing Met Office system for initializing coupled forecasts, which uses ocean and atmosphere analyses that have been generated independently using the FOAM ocean data assimilation system and NWP atmosphere assimilation systems, respectively. A set of trials has been run to investigate the impact of the weakly coupled data assimilation on the analysis, and on the coupled forecast skill out to 5–10 days. The analyses and forecasts have been assessed by comparing them to observations and by examining differences in the model fields. Encouragingly for this new system, both ocean and atmospheric assessments show the analyses and coupled forecasts produced using coupled DA to be very similar to those produced using separate ocean–atmosphere data assimilation. This work has the benefit of highlighting some aspects on which to focus to improve the coupled DA results. In particular, improving the modeling and data assimilation of the diurnal SST variation and the river runoff should be examined.

Corresponding author address: Daniel Lea, Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: daniel.lea@metoffice.gov.uk

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

A new coupled data assimilation (DA) system developed with the aim of improving the initialization of coupled forecasts for various time ranges from short range out to seasonal is introduced. The implementation here is based on a “weakly” coupled data assimilation approach whereby the coupled model is used to provide background information for separate ocean–sea ice and atmosphere–land analyses. The increments generated from these separate analyses are then added back into the coupled model. This is different from the existing Met Office system for initializing coupled forecasts, which uses ocean and atmosphere analyses that have been generated independently using the FOAM ocean data assimilation system and NWP atmosphere assimilation systems, respectively. A set of trials has been run to investigate the impact of the weakly coupled data assimilation on the analysis, and on the coupled forecast skill out to 5–10 days. The analyses and forecasts have been assessed by comparing them to observations and by examining differences in the model fields. Encouragingly for this new system, both ocean and atmospheric assessments show the analyses and coupled forecasts produced using coupled DA to be very similar to those produced using separate ocean–atmosphere data assimilation. This work has the benefit of highlighting some aspects on which to focus to improve the coupled DA results. In particular, improving the modeling and data assimilation of the diurnal SST variation and the river runoff should be examined.

Corresponding author address: Daniel Lea, Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: daniel.lea@metoffice.gov.uk

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save
  • Balmaseda, M. A., D. Dee, A. Vidard, and D. L. T. Anderson, 2007: A multivariate treatment of bias for sequential data assimilation: Application to the tropical oceans. Quart. J. Roy. Meteor. Soc., 133, 167179, doi:10.1002/qj.12.

    • Search Google Scholar
    • Export Citation
  • Bell, M. J., M. J. Martin, and N. K. Nichols, 2004: Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteor. Soc., 130, 873893, doi:10.1256/qj.02.109.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and P. E. Maisey, 2002: A physically based soil moisture nudging scheme. Hadley Center Tech. Note 35, Met Office, Exeter, United Kingdom, 24 pp.

  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Blockley, E. W., and Coauthors, 2014: Recent development of the Met Office operational ocean forecasting system: An overview and assessment of the new Global FOAM forecasts. Geosci. Model Dev., 7, 26132638, doi:10.5194/gmd-7-2613-2014.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. Da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourdalle-Badie, R., and A. M. Treguier, 2006: A climatology of runoff for the global ocean-ice model ORCA025. Mercator-Ocean Tech. Rep. MOO-RP-425-365-MER, 8 pp. [Available online at http://drakkar-ocean.eu/publications/reports/runoff-mercator-06.pdf.]

  • Brassington, G. B., and Coauthors, 2015: Progress and challenges in short- to medium-range coupled prediction. J. Oper. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 18651877, doi:10.1175/BAMS-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., T. J. Campbell, H. Jin, S. Gaberek, R. M. Hodur, and P. Martin, 2010: Effect of two-way air–sea coupling in high and low wind speed regimes. Mon. Wea. Rev., 138, 35793602, doi:10.1175/2009MWR3119.1.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2012: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., 1994: A strategy for operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671388, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Dharssi, I., K. J. Bovis, B. Macpherson, and C. P. Jones, 2011: Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol. Earth Syst. Sci., 15, 27292746, doi:10.5194/hess-15-2729-2011.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, doi:10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., D. Vasiljevic, and P. Viterbo, 2004: ECMWF’s global snow analysis: Assessment and revision based on satellite observations. J. Appl. Meteor., 43, 12821294, doi:10.1175/1520-0450(2004)043<1282:EGSAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fiedler, E. K., M. J. Martin, and J. Roberts-Jones, 2014: An operational analysis of lake surface water temperature. Tellus, 66A, 21247, doi:10.3402/tellusa.v66.21247.

    • Search Google Scholar
    • Export Citation
  • Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model Dev., 4, 223253, doi:10.5194/gmd-4-223-2011.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscombe, 2010: CICE: The Los Alamos sea ice model: Documentation and software user’s manual, version 4.1. T-3 Fluid Dynamics Group Rep. LA-CC-06012, Los Alamos National Laboratory, Los Alamos, NM, 76 pp.

  • Johns, T., A. Shelly, J. Rodriguez, D. Copsey, C. Guiavarc’h, J. Waters, and P. Sykes, 2012: Report on extensive coupled ocean-atmosphere trials on NWP (1-15 day) timescales. PWS Key Deliverable Rep. 29, Met Office, Exeter, United Kingdom, 56 pp.

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16 803–16 821, doi:10.1029/2000JC900072.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744, doi:10.1007/s10872-007-0063-0.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, K. Mogensen, P. Janssen, and D. Dee, 2014: The ECMWF coupled assimilation system. Proc. 2014 Conf. on Big Data from Space (BiDS’14), Frascati, Italy, European Space Agency-European Space Research Institute, 16–19. [Available online at http://dx.doi.org/10.2788/1823.]

  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2015: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2629, in press.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: Modelling of error covariances by 4DVAR data assimilation. Quart. J. Roy. Meteor. Soc., 129, 31673182, doi:10.1256/qj.02.131.

    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, doi:10.1002/qj.2396.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de Modélisation 27, Institut Pierre-Simon Laplace, Paris, France, 217 pp.

  • Mogensen, K. S., M. A. Balmaseda, A. Weaver, M. Martin, and A. Vidard, 2009: NEMOVAR: A variational data assimilation system for the NEMO ocean model. ECMWF Newsletter, No. 120, ECMWF, Reading, United Kingdom, 17–21.

  • Mogensen, K. S., M. A. Balmaseda, and A. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech. Memo. 668, 59 pp. [Available online at http://apdrc.soest.hawaii.edu/doc/tm668.pdf.]

  • Mulholland, D. P., P. Laloyaux, K. Haines, and M. A. Balmaseda, 2015: Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Wea. Rev., doi:10.1175/MWR-D-15-0076.1, in press.

  • Neelin, J. D., M. Latif, and F. Jin, 1994: Dynamics of coupled ocean–atmosphere models: The tropical problem. Annu. Rev. Fluid Mech., 26, 617659, doi:10.1146/annurev.fl.26.010194.003153.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Y. C. Sud, 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pellerin, P., H. Ritchie, F. J. Saucier, F. Roy, S. Desjardins, M. Valin, and V. Lee, 2004: Impact of a two-way coupling between an atmospheric and an ocean-ice model over the Gulf of St. Lawrence. Mon. Wea. Rev., 132, 13791398, doi:10.1175/1520-0493(2004)132<1379:IOATCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347362, doi:10.1002/qj.32.

    • Search Google Scholar
    • Export Citation
  • Shelly, A., T. Johns, J. Rodríguez, L. Thorpe, and D. Copsey, 2015: Assessing the physical mechanisms for improved skill of coupled NWP forecasts on 1-15 day lead times for both tropical and extra-tropical air-sea interactions. PWS Key Deliverable Rep., Met Office, Exeter, United Kingdom, 32 pp.

  • Smith, P., A. Fowler, and A. Lawless, 2015: Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model. Tellus, 67A, 27025, doi:10.3402/tellusa.v67.27025.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2006: OASIS3 user guide (prism 2-5). Programme for Integrated Earth System Modeling (PRISM) Support Initiative Rep. 3, 64 pp. [Available online at http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf.]

  • Walters, D. N., and Coauthors, 2014: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev., 7, 361386, doi:10.5194/gmd-7-361-2014.

    • Search Google Scholar
    • Export Citation
  • Waters, J., M. J. Martin, D. J. Lea, I. Mirouze, A. T. Weaver, and J. While, 2014: Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Quart. J. Roy. Meteor. Soc., 141, 333349, doi:10.1002/qj.2388.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5794 1964 404
PDF Downloads 1098 265 21