A Cloud-to-Ground Lightning Climatology for Poland

Mateusz Taszarek Department of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, Poznań, Poland

Search for other papers by Mateusz Taszarek in
Current site
Google Scholar
PubMed
Close
,
Bartosz Czernecki Department of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, Poznań, Poland

Search for other papers by Bartosz Czernecki in
Current site
Google Scholar
PubMed
Close
, and
Aneta Kozioł Institute of Meteorology and Water Management, National Research Institute, Warsaw, Poland

Search for other papers by Aneta Kozioł in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This research focuses on the climatology of cloud-to-ground (CG) lightning flashes based on PERUN lightning detection network data from 2002 to 2013. To present various CG lightning flash characteristics, 10 km × 10 km grid cells are used, while for estimating thunderstorm days, circles with radii of 17.5 km in the 1 km × 1 km grid cells are used. A total of 4 328 892 CG lightning flashes are used to analyze counts, density, polarity, peak current, and thunderstorm days. An average of 151 days with thunderstorm (appearing anywhere in Poland) occurs each year. The annual number of days with thunderstorms increases southeasterly from the coast of the Baltic Sea (15–20 days) to the Carpathian Mountains (30–35 days). The mean CG lightning flash density varies from 0.2 to 3.1 flashes km−2 yr−1 with the highest values in the southwest–northeast belt from Kraków-Częstochowa Upland to the Masurian Lake District. The maximum daily CG lightning flash density in this region amounted to 9.1 km−2 day−1 (3 July 2012). The monthly variation shows a well-defined thunderstorm season extending from May to August with July as the peak month. The vast majority of CG lightning flashes were detected during the daytime (85%) with a peak at 1400 UTC and a minimum at 0700 UTC. Almost 97% of all CG lightning flashes in the present study had a negative current, reaching the highest average monthly values in February (55 kA) and the lowest in July (24 kA). The percentage of positive CG lightning flashes was the lowest during the summer (2%–3%) and the highest during the winter (10%–20%).

Corresponding author address: Mateusz Taszarek, Dept. of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, St. Dzięgielowa 27, 61-680 Poznań, Poland. E-mail: mateusz.taszarek@amu.edu.pl

Abstract

This research focuses on the climatology of cloud-to-ground (CG) lightning flashes based on PERUN lightning detection network data from 2002 to 2013. To present various CG lightning flash characteristics, 10 km × 10 km grid cells are used, while for estimating thunderstorm days, circles with radii of 17.5 km in the 1 km × 1 km grid cells are used. A total of 4 328 892 CG lightning flashes are used to analyze counts, density, polarity, peak current, and thunderstorm days. An average of 151 days with thunderstorm (appearing anywhere in Poland) occurs each year. The annual number of days with thunderstorms increases southeasterly from the coast of the Baltic Sea (15–20 days) to the Carpathian Mountains (30–35 days). The mean CG lightning flash density varies from 0.2 to 3.1 flashes km−2 yr−1 with the highest values in the southwest–northeast belt from Kraków-Częstochowa Upland to the Masurian Lake District. The maximum daily CG lightning flash density in this region amounted to 9.1 km−2 day−1 (3 July 2012). The monthly variation shows a well-defined thunderstorm season extending from May to August with July as the peak month. The vast majority of CG lightning flashes were detected during the daytime (85%) with a peak at 1400 UTC and a minimum at 0700 UTC. Almost 97% of all CG lightning flashes in the present study had a negative current, reaching the highest average monthly values in February (55 kA) and the lowest in July (24 kA). The percentage of positive CG lightning flashes was the lowest during the summer (2%–3%) and the highest during the winter (10%–20%).

Corresponding author address: Mateusz Taszarek, Dept. of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, St. Dzięgielowa 27, 61-680 Poznań, Poland. E-mail: mateusz.taszarek@amu.edu.pl
Save
  • Altaratz, O., Z. Levin, Y. Yair, and B. Ziv, 2003: Lightning activity over land and sea on the eastern coast of the Mediterranean. Mon. Wea. Rev., 131, 20602070, doi:10.1175/1520-0493(2003)131<2060:LAOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, G., and D. Klugmann, 2014: A European lightning density analysis using 5 years of ATDnet data. Nat. Hazards Earth Syst. Sci., 14, 815829, doi:10.5194/nhess-14-815-2014.

    • Search Google Scholar
    • Export Citation
  • Antonescu, B., and S. Burcea, 2010: A cloud-to-ground lightning climatology for Romania. Mon. Wea. Rev., 138, 579591, doi:10.1175/2009MWR2975.1.

    • Search Google Scholar
    • Export Citation
  • Betz, H. D., K. Schmidt, P. Laroche, P. Blanchet, W. P. Oettinger, E. Defer, Z. Dziewit, and J. Konarski, 2009: LINET—An international lightning detection network in Europe. Atmos. Res., 91, 564573, doi:10.1016/j.atmosres.2008.06.012.

    • Search Google Scholar
    • Export Citation
  • Bielec-Bąkowska, Z., 2003: Long-term variability of thunderstorm occurrence in Poland in the 20th century. Atmos. Res., 67–68, 3552, doi:10.1016/S0169-8095(03)00082-6.

    • Search Google Scholar
    • Export Citation
  • Biron, D., 2009: LAMPINET–Lightning detection in Italy. Lightning: Principles, Instruments and Applications Review of Modern Lightning Research, H. D. Betz, U. Schumann, and P. Laroche, Eds., Springer, 141–159.

  • Bodzak, P., 2006: Detekcja i Lokalizacja Wyładowań Atmosferycznych (Lightning Detection and Localization). Instytut Meteorologii i Gospodarki Wodnej, 135 pp.

  • Brook, M., 1992: Breakdown of electric fields in winter storms. Res. Lett. Atmos. Electr., 12, 4752.

  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003a: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, doi:10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003b: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and D. Changnon, 2001: Long-term fluctuations in the thunderstorm activity in the United States. Climatic Change, 50, 489503, doi:10.1023/A:1010651512934.

    • Search Google Scholar
    • Export Citation
  • Clodman, S., and W. Chisholm, 1996: Lightning flash climatology in the southern Great Lakes region. Atmos.–Ocean, 34, 345377, doi:10.1080/07055900.1996.9649568.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Curran, E. B., R. L. Holle, and R. E. López, 2000: Lightning casualties and damages in the United States from 1959 to 1994. J. Climate, 13, 34483464, doi:10.1175/1520-0442(2000)013<3448:LCADIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Czernecki, B., M. Taszarek, L. Kolendowicz, and J. Konarski, 2015: Relationship between human observations of thunderstorms and PERUN lightning detection network in Poland. Atmos. Res., 167, 118–128, doi:10.1016/j.atmosres.2015.08.003.

    • Search Google Scholar
    • Export Citation
  • Diendorfer, G., 2008: Some comments on the achievable accuracy of local ground flash density values. Proc. 29th Int. Conf. on Lightning Protection. Uppsala, Sweden, ICLP Centre, 2-8-1–2-8-6.

  • Dotzek, N., P. H. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Search Google Scholar
    • Export Citation
  • Enno, S. E., 2011: A climatology of cloud-to-ground lightning over Estonia, 2005–2009. Atmos. Res., 100, 310317, doi:10.1016/j.atmosres.2010.08.024.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Feudale, L., A. Manzato, and S. Micheletti, 2013: A cloud-to-ground lightning climatology for north-eastern Italy. Adv. Sci. Res., 10, 7784, doi:10.5194/asr-10-77-2013.

    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P. H., N. Dotzek, F. Stel, H. E. Brooks, C. A. Doswell III, and D. M. Elsom, 2004: ESWD—A standardized, flexible data format for severe weather reports. Preprints, Third European Conf. on Severe Storms, León, Spain, European Severe Storms Laboratory. [Available online at https://www.researchgate.net/publication/224780785_ESWD_-_A_Standardized_Flexible_Data_Format_for_Severe_Weather_Reports.]

  • Holle, R. L., R. E. López, and C. Zimmermann, 1999: Updated recommendations for lightning safety—1998. Bull. Amer. Meteor. Soc., 80, 20352041, doi:10.1175/1520-0477(1999)080<2035:URFLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Kolendowicz, L., 2006: The influence of synoptic situations on the occurrence of days with thunderstorms during a year in the territory of Poland. Int. J. Climatol., 26, 18031820, doi:10.1002/joc.1348.

    • Search Google Scholar
    • Export Citation
  • Kolendowicz, L., 2012: Synoptic patterns associated with thunderstorms in Poland. Meteor. Z., 21, 145156, doi:10.1127/0941-2948/2012/0272.

    • Search Google Scholar
    • Export Citation
  • Krider, E. P., R. C. Noggle, A. E. Pifer, and D. L. Vance, 1980: Lightning direction-finding systems for forest fire detection. Bull. Amer. Meteor. Soc., 61, 980986, doi:10.1175/1520-0477(1980)061<0980:LDFSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larjavaara, M., T. Kuuluvainena, and H. Rita, 2005: Spatial distribution of lightning-ignited forest fires in Finland. For. Ecol. Manage., 208, 177188, doi:10.1016/j.foreco.2004.12.005.

    • Search Google Scholar
    • Export Citation
  • Łoboda, M., H. D. Betz, P. Baranski, J. Wiszniowski, and Z. Dziewit, 2009: New lightning detection networks in Poland—LINET and LLDN. Open Atmos. Sci. J., 3, 29–38, doi:10.2174/1874282300903010029.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 432 pp.

  • Mäkelä, A., P. Rossi, and D. M. Schultz, 2011: The daily cloud-to-ground lightning flash density in the contiguous United States and Finland. Mon. Wea. Rev., 139, 13231337, doi:10.1175/2010MWR3517.1.

    • Search Google Scholar
    • Export Citation
  • Mäkelä, A., E. Saltikoff, J. Julkunen, I. Juga, E. Gregow, and S. Niemelä, 2013: Cold-season thunderstorms in Finland and their effect on aviation safety. Bull. Amer. Meteor. Soc., 94, 847858, doi:10.1175/BAMS-D-12-00039.1.

    • Search Google Scholar
    • Export Citation
  • Mäkelä, A., S. E. Enno, and J. Haapalainen, 2014: Nordic Lightning Information System: Thunderstorm climate of northern Europe for the period 2002–2011. Atmos. Res., 139, 4661, doi:10.1016/j.atmosres.2014.01.008.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA/NWS, 2015: Nautical dawn. NOAA/NWS Glossary. [Available online at http://w1.weather.gov/glossary/index.php?word=nautical+dawn.]

  • Novák, P., and H. Kyznarová, 2011: Climatology of lightning in the Czech Republic. Atmos. Res., 100, 318333, doi:10.1016/j.atmosres.2010.08.022.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and A. C. Silver, 1997: Lightning ground flash density in the contiguous United States: 1992–95. Mon. Wea. Rev., 125, 631638, doi:10.1175/1520-0493(1997)125<0631:LGFDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, and K. L. Cummins, 2011: The North American Lightning Detection Network (NALDN) analysis of flash data: 2001–09. Mon. Wea. Rev., 139, 13051322, doi:10.1175/2010MWR3452.1.

    • Search Google Scholar
    • Export Citation
  • Pohjola, H., and A. Mäkelä, 2013: The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res., 123, 117128, doi:10.1016/j.atmosres.2012.10.019.

    • Search Google Scholar
    • Export Citation
  • Rakov, V. A., and M. A. Uman, 2003: Lightning: Physics and Effects. Cambridge University Press, 687 pp.

  • R Core Team, 2014: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Available online at http://www.R-project.org/.]

  • Riemann-Campe, K., K. Fraedrich, and F. Lunkeit, 2009: Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 re-analysis. Atmos. Res., 93, 534545, doi:10.1016/j.atmosres.2008.09.037.

    • Search Google Scholar
    • Export Citation
  • Santos, J. A., M. A. Reis, J. Sousa, S. M. Leite, S. Correia, M. Janeira, and M. Fragoso, 2012: Cloud-to-ground lightning in Portugal: Patterns and dynamical forcing. Nat. Hazards Earth Syst. Sci., 12, 639649, doi:10.5194/nhess-12-639-2012.

    • Search Google Scholar
    • Export Citation
  • Sasse, M., and T. Hauf, 2003: A study of thunderstorm-induced delays at Frankfurt airport, Germany. Meteor. Appl., 10, 2130, doi:10.1017/S1350482703005036.

    • Search Google Scholar
    • Export Citation
  • Schulz, W., K. Cummins, G. Diendorfer, and M. Dorninger, 2005: Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. J. Geophys. Res., 110, D09101, doi:10.1029/2004JD005332.

    • Search Google Scholar
    • Export Citation
  • Sonnadara, U., V. Cooray, and T. Götschl, 2006: Characteristics of cloud-to-ground lightning flashes over Sweden. Phys. Scr., 74, 541, doi:10.1088/0031-8949/74/5/010.

    • Search Google Scholar
    • Export Citation
  • Soriano, L. R., F. de Pablo, and C. Tomas, 2005: Ten-year study of cloud-to ground lightning activity in the Iberian Peninsula. J. Atmos. Solar-Terr. Phys., 67, 1632–1639, doi:10.1016/j.jastp.2005.08.019.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., and H. E. Brooks, 2015: Tornado climatology of Poland. Mon. Wea. Rev., 143, 702717, doi:10.1175/MWR-D-14-00185.1.

  • Taszarek, M., and K. Suwała, 2015: Large hail in Poland in 2012. Quaestiones Geogr., 34, 7584, doi:10.1515/quageo-2015-0007.

  • Tuomi, T. J., and A. Mäkelä, 2008: Thunderstorm climate of Finland 1998–2007. Geophysica, 44, 6780.

  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, doi:10.1175/BAMS-D-12-00082.1.

    • Search Google Scholar
    • Export Citation
  • Wacker, R. S., and R. E. Orville, 1999a: Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade. 1. Observations. J. Geophys. Res., 104, 21512157, doi:10.1029/1998JD200060.

    • Search Google Scholar
    • Export Citation
  • Wacker, R. S., and R. E. Orville, 1999b: Changes in measured lightning flash count and return stroke peak current after the 1994 U. S. National Lightning Detection Network upgrade. II. Theory. J. Geophys. Res., 104, 21592162, doi:10.1029/1998JD200059.

    • Search Google Scholar
    • Export Citation
  • Wanke, E., 2011: Blitzortung.org—A low cost time of arrival lightning detection and lightning location network. Universität Düsseldorf, 75 pp. [Available online at http://www.blitzortung.org/Documents/TOA_Blitzortung.pdf.]

  • Wapler, K., 2013: High-resolution climatology of lightning characteristics within Central Europe. Meteor. Atmos. Phys., 122, 175184, doi:10.1007/s00703-013-0285-1.

    • Search Google Scholar
    • Export Citation
  • Wierzchowski, J., M. Heathcott, and M. D. Flannigan, 2002: Lightning and lightning fire, central cordillera, Canada. Int. J. Wildland Fire, 11, 4151, doi:10.1071/WF01048.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50, 527–528, doi:10.1175/0065-9401-28.50.527.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1621 405 32
PDF Downloads 890 220 20