An OSSE-Based Evaluation of Hybrid Variational–Ensemble Data Assimilation for the NCEP GFS. Part II: 4DEnVar and Hybrid Variants

Daryl T. Kleist Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Daryl T. Kleist in
Current site
Google Scholar
PubMed
Close
and
Kayo Ide Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, and Institute for Physical Science and Technology, and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, College Park, Maryland

Search for other papers by Kayo Ide in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work describes the formulation of a hybrid four-dimensional ensemble--variational (4DEnVar) algorithm and initialization options utilized within the National Centers for Environmental Prediction global data assimilation system. Initialization schemes that are proposed for use are the tangent-linear normal mode constraint, weak constraint digital filter, and a combination thereof.

An observing system simulation experiment is carried out to evaluate the impact of utilizing hybrid 4DEnVar with various initialization techniques. The experiments utilize a dual-resolution configuration, where the ensemble is run at roughly half the resolution of the deterministic component. It is found that by going from 3D to 4D, analysis error is reduced for most variables and levels. The inclusion of a time-invariant static covariance when used without a normal mode–based strong constraint is found to have a small, positive impact on the analysis. The experiments show that the weak constraint digital filter degrades the quality of analysis, due to the use of hourly states to prescribe high-frequency noise. It is found that going from 3D to 4D ensemble covariances has a relatively larger impact in the extratropics, whereas the original inclusion of ensemble-based covariances was found to have the largest impact in the tropics. The improvements found in going from 3D to 4D covariances in the hybrid EnVar formulation are not as large as was found in Part I from the original introduction of the hybrid algorithm. The analyses generated by the 4D hybrid scheme are found to yield slightly improved extratropical height and wind forecasts, with smaller impacts on other variables and in general in the tropics.

Corresponding author address: Dr. Daryl T. Kleist, Computer and Space Sciences Building, University of Maryland, College Park, Computer and Space Sciences Building, College Park, MD 20742. E-mail: daryl.kleist@noaa.gov

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

This work describes the formulation of a hybrid four-dimensional ensemble--variational (4DEnVar) algorithm and initialization options utilized within the National Centers for Environmental Prediction global data assimilation system. Initialization schemes that are proposed for use are the tangent-linear normal mode constraint, weak constraint digital filter, and a combination thereof.

An observing system simulation experiment is carried out to evaluate the impact of utilizing hybrid 4DEnVar with various initialization techniques. The experiments utilize a dual-resolution configuration, where the ensemble is run at roughly half the resolution of the deterministic component. It is found that by going from 3D to 4D, analysis error is reduced for most variables and levels. The inclusion of a time-invariant static covariance when used without a normal mode–based strong constraint is found to have a small, positive impact on the analysis. The experiments show that the weak constraint digital filter degrades the quality of analysis, due to the use of hourly states to prescribe high-frequency noise. It is found that going from 3D to 4D ensemble covariances has a relatively larger impact in the extratropics, whereas the original inclusion of ensemble-based covariances was found to have the largest impact in the tropics. The improvements found in going from 3D to 4D covariances in the hybrid EnVar formulation are not as large as was found in Part I from the original introduction of the hybrid algorithm. The analyses generated by the 4D hybrid scheme are found to yield slightly improved extratropical height and wind forecasts, with smaller impacts on other variables and in general in the tropics.

Corresponding author address: Dr. Daryl T. Kleist, Computer and Space Sciences Building, University of Maryland, College Park, Computer and Space Sciences Building, College Park, MD 20742. E-mail: daryl.kleist@noaa.gov

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save
  • Andersson, E., and M. Masutani, 2010: Collaboration on observing system simulation experiments (Joint OSSE). ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 14–16.

  • Bishop, C. H., and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-Var state estimation. Mon. Wea. Rev., 139, 12411255, doi:10.1175/2010MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and E. A. Satterfield, 2013: Hidden error variance theory. Part I: Exposition and analytic model. Mon. Wea. Rev., 141, 14541468, doi:10.1175/MWR-D-12-00118.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., E. A. Satterfield, and K. T. Shanley, 2013: Hidden error variance theory. Part II: An instrument that reveals hidden error variance distributions from ensemble forecasts and observations. Mon. Wea. Rev., 141, 14691483, doi:10.1175/MWR-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bocquet, M., and P. Sakov, 2014: An iterative ensemble Kalman smoother. Quart. J. Roy. Meteor. Soc., 140, 15211534, doi:10.1002/qj.2236.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, doi:10.5194/npg-20-669-2013.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671388, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, doi:10.1256/qj.05.137.

  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, doi:10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., J.-T. Camino, and L. Berre, 2014: 4DEnVar: Link with 4D state formulation of variational assimilation and different possible implementations. Quart. J. Roy. Meteor. Soc., 140, 2097–2110, doi:10.1002/qj.2325.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., R. Yang, N. Privé, K.-S. Tai, R. Todling, M. E. Sienkiewicz, and J. Guo, 2013: Development and validation of observing-system simulation experiments at NASA’s Global Modeling and Assimilation Office. Quart. J. Roy. Meteor. Soc., 139, 11621178, doi:10.1002/qj.2027.

    • Search Google Scholar
    • Export Citation
  • Fairbairn, D., S. R. Pring, A. C. Lorenc, and I. Roulstone, 2014: A comparison of 4DVar with ensemble data assimilation methods. Quart. J. Roy. Meteor. Soc., 140, 281294, doi:10.1002/qj.2135.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., and J.-N. Thépaut, 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Wea. Rev., 129, 2089–2102, doi:10.1175/1520-0493(2001)129<2089:IOTDFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., M. Tanguay, S. Laroche, and S. Pellerin, 2007: Extension of 3DVar to 4DVar: Implementation of 4DVar at the Meteorological Service of Canada. Mon. Wea. Rev., 135, 23392364, doi:10.1175/MWR3394.1.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., 1993: Use of a digital filter as weak constraint in variational data assimilation. Proc. Workshop on Variational Assimilation, with Special Emphasis on Three-Dimensional Aspects, Reading, United Kingdom, ECMWF, 327338.

  • Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A, 273277, doi:10.1111/j.1600-0870.2004.00066.x.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., 2012: An evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Ph.D. thesis, Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD, 149 pp. [Available online at http://drum.lib.umd.edu/handle/1903/13135.]

  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-Hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, R. M. Errico, and R. Yang, 2009: Improving incremental balance in the GSI 3DVar analysis system. Mon. Wea. Rev., 137, 10461060, doi:10.1175/2008MWR2623.1.

    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McClay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, doi:10.1175/MWR-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Lawless, A. S., 2010: A note on the analysis error associated with 3D-FGAT. Quart. J. Roy. Meteor. Soc., 136, 10941098, doi:10.1002/qj.619.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., and J. C. Derber, 1985: The use of adjoints equations to solve a variational adjustment problem with advective constraints. Tellus, 37A, 309322, doi:10.1111/j.1600-0870.1985.tb00430.x.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Q. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with Advanced Research WRF using real data. Mon. Wea. Rev., 141, 27212739, doi:10.1175/MWR-D-12-00130.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 33633373, doi:10.1175/2008MWR2312.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2009: An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with Advanced Research WRF. Mon. Wea. Rev., 137, 16871704, doi:10.1175/2008MWR2699.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-VAR. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2013: Recommended nomenclature for EnVar data assimilation methods. Research Activities in Atmospheric and Oceanic Modeling, WGNE, 2 pp. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2013/individual-articles/01_Lorenc_Andrew_EnVar_nomenclature.pdf.]

  • Lorenc, A. C., and F. Rawlins, 2005: Why does 4D-Var beat 3D-Var? Quart. J. Roy. Meteor. Soc., 131, 32473257, doi:10.1256/qj.05.85.

  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, doi:10.1175/MWR-D-14-00195.1.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X. Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, doi:10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., M. Tanguay, and L. Fillion, 2000: Four-dimensional variational data assimilation with digital filter initialization. Mon. Wea. Rev., 128, 24912510, doi:10.1175/1520-0493(2000)128<2491:FDVDAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., J.-N. Thépaut, and P. Courtier, 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124, 18611887, doi:10.1002/qj.49712455005.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimiliation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 11431170, doi:10.1002/qj.49712656415.

    • Search Google Scholar
    • Export Citation
  • Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global 4-dimensional data assimilation system. Quart. J. Roy. Meteor. Soc., 133, 347362, doi:10.1002/qj.32.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T., and L. Xu, 2006: Development of NAVDAS-AR: Nonlinear formulation and outer loop tests. Tellus, 58A, 4559, doi:10.1111/j.1600-0870.2006.00148.x.

    • Search Google Scholar
    • Export Citation
  • Tian, X., Z. Xie, and A. Dai, 2008: An ensemble-based explicit four-dimensional variational assimilation method. J. Geophys. Res., 113, D21124, doi:10.1029/2008JD010358.

    • Search Google Scholar
    • Export Citation
  • Tian, X., Z. Xie, and Q. Sun, 2011: A POD-based ensemble four-dimensional variational assimilation method. Tellus, 63A, 805816, doi:10.1111/j.1600-0870.2011.00529.x.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for the NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, doi:10.1175/MWR-D-13-00303.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Wee, T.-K., and Y.-H. Kuo, 2004: Impact of a digital filter as a weak constraint in MM5 4DVar: An observing system simulation experiment. Mon. Wea. Rev., 132, 543559, doi:10.1175/1520-0493(2004)132<0543:IOADFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, doi:10.1175/2007MWR2018.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., E. Kalnay, B. Hunt, and N. E. Bowler, 2009: Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter. Quart. J. Roy. Meteor. Soc., 135, 251262, doi:10.1002/qj.353.

    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., E. Kalnay, and B. Hunt, 2012: Handling nonlinearity in an ensemble Kalman filter: Experiments with the three-variable Lorenz model. Mon. Wea. Rev., 140, 26282646, doi:10.1175/MWR-D-11-00313.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587600, doi:10.1175/MWR-D-11-00023.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, doi:10.1002/qj.2233.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1622 354 64
PDF Downloads 702 222 23