An OSSE-Based Evaluation of Hybrid Variational–Ensemble Data Assimilation for the NCEP GFS. Part I: System Description and 3D-Hybrid Results

Daryl T. Kleist Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Daryl T. Kleist in
Current site
Google Scholar
PubMed
Close
and
Kayo Ide Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, and Institute for Physical Science and Technology, and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, College Park, Maryland

Search for other papers by Kayo Ide in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An observing system simulation experiment (OSSE) has been carried out to evaluate the impact of a hybrid ensemble–variational data assimilation algorithm for use with the National Centers for Environmental Prediction (NCEP) global data assimilation system. An OSSE provides a controlled framework for evaluating analysis and forecast errors since a truth is known. In this case, the nature run was generated and provided by the European Centre for Medium-Range Weather Forecasts as part of the international Joint OSSE project. The assimilation and forecast impact studies are carried out using a model that is different than the nature run model, thereby accounting for model error and avoiding issues with the so-called identical-twin experiments.

It is found that the quality of analysis is improved substantially when going from three-dimensional variational data assimilation (3DVar) to a hybrid 3D ensemble–variational (EnVar)-based algorithm. This is especially true in terms of the analysis error reduction for wind and moisture, most notably in the tropics. Forecast impact experiments show that the hybrid-initialized forecasts improve upon the 3DVar-based forecasts for most metrics, lead times, variables, and levels. An additional experiment that utilizes 3DEnVar (100% ensemble) demonstrates that the use of a 25% static error covariance contribution does not alter the quality of hybrid analysis when utilizing the tangent-linear normal mode constraint on the total hybrid increment.

Corresponding author address: Dr. Daryl T. Kleist, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Computer and Space Sciences Building, College Park, MD 20742. E-mail: daryl.kleist@noaa.gov

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

An observing system simulation experiment (OSSE) has been carried out to evaluate the impact of a hybrid ensemble–variational data assimilation algorithm for use with the National Centers for Environmental Prediction (NCEP) global data assimilation system. An OSSE provides a controlled framework for evaluating analysis and forecast errors since a truth is known. In this case, the nature run was generated and provided by the European Centre for Medium-Range Weather Forecasts as part of the international Joint OSSE project. The assimilation and forecast impact studies are carried out using a model that is different than the nature run model, thereby accounting for model error and avoiding issues with the so-called identical-twin experiments.

It is found that the quality of analysis is improved substantially when going from three-dimensional variational data assimilation (3DVar) to a hybrid 3D ensemble–variational (EnVar)-based algorithm. This is especially true in terms of the analysis error reduction for wind and moisture, most notably in the tropics. Forecast impact experiments show that the hybrid-initialized forecasts improve upon the 3DVar-based forecasts for most metrics, lead times, variables, and levels. An additional experiment that utilizes 3DEnVar (100% ensemble) demonstrates that the use of a 25% static error covariance contribution does not alter the quality of hybrid analysis when utilizing the tangent-linear normal mode constraint on the total hybrid increment.

Corresponding author address: Dr. Daryl T. Kleist, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Computer and Space Sciences Building, College Park, MD 20742. E-mail: daryl.kleist@noaa.gov

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save
  • Andersson, E., and M. Masutani, 2010: Collaboration on observing system simulation experiments (Joint OSSE). ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 14–16.

  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, doi:10.1256/qj.04.15.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, doi:10.5194/npg-20-669-2013.

    • Search Google Scholar
    • Export Citation
  • Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282290, doi:10.1175/2009MWR3017.1.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 13331347, doi:10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., R. Yang, M. Masutani, and J. S. Woollen, 2007: The estimation of analysis error characteristics using an observation system simulation experiment. Meteor. Z., 16, 695708, doi:10.1127/0941-2948/2007/0242.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., R. Yang, N. Privé, K.-S. Tai, R. Todling, M. E. Sienkiewicz, and J. Guo, 2013: Development and validation of observing-system simulation experiments at NASA’s Global Modeling and Assimilation Office. Quart. J. Roy. Meteor. Soc.,139, 1162–1178, doi:10.1002/qj.2027.

  • Etherton, B. J., and C. H. Bishop, 2004: Resilience of hybrid ensemble/3DVar analysis schemes to model error and ensemble covariance error. Mon. Wea. Rev., 132, 10651080, doi:10.1175/1520-0493(2004)132<1065:ROHDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, D. T. Kleist, M. Fiorino, and S. G. Benjamin, 2011: Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Wea. Rev., 139, 32433247, doi:10.1175/MWR-D-11-00079.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)—Version 1. NOAA Tech. Rep. 122, 33 pp.

  • Kleist, D. T., 2012: An evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Ph.D. thesis, Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD, 149 pp. [Available online at http://drum.lib.umd.edu/handle/1903/13135.]

  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev.,143,452470, doi:10.1175/MWR-D-13-00350.1.

  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, R. M. Errico, and R. Yang, 2009a: Improving incremental balance in the GSI 3DVar analysis system. Mon. Wea. Rev., 137, 10461060, doi:10.1175/2008MWR2623.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. J. Lord, 2009b: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McClay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, doi:10.1175/MWR-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Q. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with Advanced Research WRF using real data. Mon. Wea. Rev., 141, 27212739, doi:10.1175/MWR-D-12-00130.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 33633373, doi:10.1175/2008MWR2312.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2009: An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with Advanced Research WRF. Mon. Wea. Rev., 137, 16871704, doi:10.1175/2008MWR2699.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-VAR. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2013: Recommended nomenclature for EnVar data assimilation methods. Research Activities in Atmospheric and Oceanic Modeling, WGNE, 2 pp. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2013/individual-articles/01_Lorenc_Andrew_EnVar_nomenclature.pdf.]

  • Masutani, M., and Coauthors, 2007: Progress in Joint OSSEs: A new nature run and international collaboration. 12th Conf. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), New Orleans, LA, Amer. Meteor. Soc., 12B.5. [Available online at http://ams.confex.com/ams/pdfpapers/124080.pdf.]

  • Masutani, M., and Coauthors, 2010: Observing system simulation experiments at the National Centers for Environmental Prediction. J. Geophys. Res., 115, D07101, doi:10.1029/2009JD012528.

    • Search Google Scholar
    • Export Citation
  • McCarty, W., R. M. Errico, and R. Gelaro, 2012: Cloud coverage in the Joint OSSE nature run. Mon. Wea. Rev., 140, 18631871, doi:10.1175/MWR-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Pannekoucke, O., L. Berre, and G. Desroziers, 2008: Background-error correlation length-scale estimates and their sampling statistics. Quart. J. Roy. Meteor. Soc., 134, 497511, doi:10.1002/qj.212.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penny, S. G., 2014: A hybrid local ensemble transform Kalman filter. Mon. Wea. Rev., 142, 2139–2149, doi:10.1175/MWR-D-13-00131.1.

  • Privé, N. C., R. M. Errico, and K.-S. Tai, 2013a: The influence of observation errors on analysis error and forecast skill investigated with an observing system simulation experiment. J. Geophys. Res. Atmos., 118, 53325346, doi:10.1002/jgrd.50452.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., R. M. Errico, and K.-S. Tai, 2013b: Validation of the forecast skill of the Global Modeling and Assimilation Office Observing System Simulation Experiment. Quart. J. Roy. Meteor. Soc., 139, 13541363, doi:10.1002/qj.2029.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003a: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, doi:10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003b: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 15361548, doi:10.1175//2543.1.

    • Search Google Scholar
    • Export Citation
  • Reale, O., J. Terry, M. Masutani, E. Andersson, L.-P. Riishojgaard, and J.-C. Jusem, 2007: Preliminary evaluation of the European Centre for Medium-Range Weather Forecasts’ (ECMWF) nature run over the tropical Atlantic and African monsoon region. Geophys. Res. Lett., 34, L22810, doi:10.1029/2007GL031640.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the Gridpoint Statistical Interpolation (GSI) variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, doi:10.1175/2010MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Snyder, and T. M. Hamill, 2007a: On the theoretical equivalence of differently proposed ensemble/3D-Var hybrid analysis schemes. Mon. Wea. Rev., 135, 222227, doi:10.1175/MWR3282.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2007b: A comparison of hybrid ensemble transform Kalman filter–optimum interpolation and ensemble square root filter analysis schemes. Mon. Wea. Rev., 135, 10551076, doi:10.1175/MWR3307.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVar data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, doi:10.1175/2008MWR2444.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF–3DVar data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, doi:10.1175/2008MWR2445.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2009: A comparison of the hybrid and EnSRF analysis schemes in the presence of model errors due to unresolved scales. Mon. Wea. Rev., 137, 32193232, doi:10.1175/2009MWR2923.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, doi:10.1175/2007MWR2018.1.

    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., D. F. Parrish, and R. J. Purser, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Zhang, and J. Poterjoy, 2013: E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited area weather prediction model and comparison to E4DVar. Mon. Wea. Rev., 141, 900917, doi:10.1175/MWR-D-12-00075.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587600, doi:10.1175/MWR-D-11-00023.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1114 323 28
PDF Downloads 666 167 12