Multiscale Interactions in an Idealized Walker Cell: Simulations with Sparse Space–Time Superparameterization

Joanna Slawinska Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Search for other papers by Joanna Slawinska in
Current site
Google Scholar
PubMed
Close
,
Olivier Pauluis Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Olivier Pauluis in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Majda Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Andrew J. Majda in
Current site
Google Scholar
PubMed
Close
, and
Wojciech W. Grabowski National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper discusses the sparse space–time superparameterization (SSTSP) algorithm and evaluates its ability to represent interactions between moist convection and the large-scale circulation in the context of a Walker cell flow over a planetary scale two-dimensional domain. The SSTSP represents convective motions in each column of the large-scale model by embedding a cloud-resolving model, and relies on a sparse sampling in both space and time to reduce computational cost of explicit simulation of convective processes. Simulations are performed varying the spatial compression and/or temporal acceleration, and results are compared to the cloud-resolving simulation reported previously. The algorithm is able to reproduce a broad range of circulation features for all temporal accelerations and spatial compressions, but significant biases are identified. Precipitation tends to be too intense and too localized over warm waters when compared to the cloud-resolving simulations. It is argued that this is because coherent propagation of organized convective systems from one large-scale model column to another is difficult when superparameterization is used, as noted in previous studies. The Walker cell in all simulations exhibits low-frequency variability on a time scale of about 20 days, characterized by four distinctive stages: suppressed, intensification, active, and weakening. The SSTSP algorithm captures spatial structure and temporal evolution of the variability. This reinforces the confidence that SSTSP preserves fundamental interactions between convection and the large-scale flow, and offers a computationally efficient alternative to traditional convective parameterizations.

Corresponding author address: Joanna Slawinska, Center for Prototype Climate Modeling, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates. E-mail: joanna.slawinska@nyu.edu

Abstract

This paper discusses the sparse space–time superparameterization (SSTSP) algorithm and evaluates its ability to represent interactions between moist convection and the large-scale circulation in the context of a Walker cell flow over a planetary scale two-dimensional domain. The SSTSP represents convective motions in each column of the large-scale model by embedding a cloud-resolving model, and relies on a sparse sampling in both space and time to reduce computational cost of explicit simulation of convective processes. Simulations are performed varying the spatial compression and/or temporal acceleration, and results are compared to the cloud-resolving simulation reported previously. The algorithm is able to reproduce a broad range of circulation features for all temporal accelerations and spatial compressions, but significant biases are identified. Precipitation tends to be too intense and too localized over warm waters when compared to the cloud-resolving simulations. It is argued that this is because coherent propagation of organized convective systems from one large-scale model column to another is difficult when superparameterization is used, as noted in previous studies. The Walker cell in all simulations exhibits low-frequency variability on a time scale of about 20 days, characterized by four distinctive stages: suppressed, intensification, active, and weakening. The SSTSP algorithm captures spatial structure and temporal evolution of the variability. This reinforces the confidence that SSTSP preserves fundamental interactions between convection and the large-scale flow, and offers a computationally efficient alternative to traditional convective parameterizations.

Corresponding author address: Joanna Slawinska, Center for Prototype Climate Modeling, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates. E-mail: joanna.slawinska@nyu.edu
Save
  • Clark, T. L., 1979: Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations. J. Atmos. Sci., 36, 21912215, doi:10.1175/1520-0469(1979)036<2191:NSWATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., D. A. Randall, and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20, 91112, doi:10.1175/JCLI3991.1.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., D. M. W. Frierson, I. M. Held, O. Pauluis, and G. K. Vallis, 2007: Resolving convection in a global hypohydrostatic model. J. Atmos. Sci., 64, 20612075, doi:10.1175/JAS3929.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298, doi:10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978–997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952, doi:10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006a: Comments on “Preliminary tests of multiscale modeling with a two-dimensional framework: Sensitivity to coupling methods.” Mon. Wea. Rev., 134, 20212026, doi:10.1175/MWR3161.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006b: Impact of explicit atmosphere–ocean coupling on MJO-like coherent structures in idealized aquaplanet simulations. J. Atmos. Sci., 63, 22892306, doi:10.1175/JAS3740.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D, 133, 171178, doi:10.1016/S0167-2789(99)00104-9.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996: Cloud resolving modeling of tropical cloud systems during Phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 36843709, doi:10.1175/1520-0469(1996)053<3684:CRMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud resolving modeling of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 32643282, doi:10.1175/1520-0469(1998)055<3264:CRMOCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., J.-I. Yano, and W. Moncrieff, 2000: Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57, 2022–2040, doi:10.1175/1520-0469(2000)057<2022:CRMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., and A. Arakawa, 2005: Preliminary tests of multiscale modeling with a two-dimensional framework: Sensitivity to coupling methods. Mon. Wea. Rev., 133, 649–662, doi:10.1175/MWR-2878.1.

    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., and A. Arakawa, 2010: Development of a quasi-3D multiscale modeling framework: Motivation, basic algorithm and preliminary results. J. Adv. Model. Earth Syst., 2 (11), doi:10.3894/JAMES.2010.2.11.

    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., and A. Arakawa, 2014: Modeling the moist-convective atmosphere with a Quasi-3-D Multiscale Modeling Framework (Q3D MMF). J. Adv. Model. Earth Syst., 6, 185205, doi:10.1002/2013MS000295.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., D. A. Randall, and C. DeMotte, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical processes. J. Atmos. Sci., 62, 21362154, doi:10.1175/JAS3453.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. S. Pritchard, and R. C. J. Somerville, 2013: Robustness and sensitivities of central U.S. summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index. Geophys. Res. Lett., 40, 32873291, doi:10.1002/grl.50597.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., P. N. Blossey, and C. S. Bretherton, 2005: A new approach for 3D cloud-resolving simulations of large-scale atmospheric circulation. Geophys. Res. Lett., 32, L02809, doi:10.1029/2004GL021024.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and G. L. Stephens, 2006: An enhanced convection–wind– evaporation feedback in a superparameterization GCM (SP-GCM) depiction of the Asian summer monsoon. Geophys. Res. Lett., 33, L06707, doi:10.1029/2005GL025060.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and I. Grooms, 2014: New perspectives on superparameterization for geophysical turbulence. J. Comput. Phys., 271, 60–77, doi:10.1016/j.jcp.2013.09.014.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., D. M. W. Frierson, S. T. Garner, I. M. Held, and G. K. Vallis, 2006: The hypohydrostatic rescaling and its impacts on atmospheric convection. Theor. Comput. Fluid Dyn., 20, 485499, doi:10.1007/s00162-006-0026-x.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and R. C. J. Somerville, 2009a: Assessing the diurnal cycle of precipitation in a multi-scale climate model. J. Adv. Model. Earth Syst., 1 (12), doi:10.3894/JAMES.2009.1.12.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and R. C. J. Somerville, 2009b: Empirical orthogonal function analysis of the diurnal cycle of precipitation in a multi-scale climate model. Geophys. Res. Lett., 36, L05812, doi:10.1029/2008GL036964.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., M. W. Moncrieff, and R. C. J. Somerville, 2011: Orogenic propagating precipitation systems over the United States in a global climate model with embedded explicit convection. J. Atmos. Sci., 68, 18211840, doi:10.1175/2011JAS3699.1.

    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Comput. Fluids, 37, 11931207, doi:10.1016/j.compfluid.2007.12.001.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud-parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1975: A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 32, 934957, doi:10.1175/1520-0469(1975)032<0934:ATDNMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slawinska, J., O. Pauluis, A. J. Majda, and W. W. Grabowski, 2014: Multiscale interactions in an idealized Walker circulation: Mean circulation and intraseasonal variability. J. Atmos. Sci., 71, 953971, doi:10.1175/JAS-D-13-018.1.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 2006: Multidimensional positive definite advection transport algorithm: An overview. Int. J. Numer. Methods Fluids, 50, 1123–1144, doi:10.1002/fld.1071.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, 1997: On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos.–Ocean, 35, 127152, doi:10.1080/07055900.1997.9687345.

    • Search Google Scholar
    • Export Citation
  • Soong, S. T., and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035–2050, doi:10.1175/1520-0469(1980)037<2035:ROTCTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soong, S. T., and W. K. Tao, 1980: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37, 20162034, doi:10.1175/1520-0469(1980)037<2016:RODTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, J. T., 1973: A three-dimensional model of cumulus cloud development. J. Atmos. Sci., 30, 414435, doi:10.1175/1520-0469(1973)030<0414:ATDMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and S. T. Soong, 1986: A study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci., 43, 26532676, doi:10.1175/1520-0469(1986)043<2653:ASOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312, doi:10.1175/2009JAS3081.1

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, M., and Coauthors, 2011: The multi-scale aerosol-climate model PNNL-MMF: Model description and evaluation. Geosci. Model Dev., 4, 137168, doi:10.5194/gmd-4-137-2011.

    • Search Google Scholar
    • Export Citation
  • Xing, Y., A. J. Majda, and W. W. Grabowski, 2009: New efficient sparse space–time algorithms for superparameterization on mesoscales. Mon. Wea. Rev., 137, 43074324, doi:10.1175/2009MWR2858.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1996: Explicit simulation of cumulus ensembles with the GATE Phase III data: Comparison with observations. J. Atmos. Sci., 53, 37103736, doi:10.1175/1520-0469(1996)053<3710:ESOCEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and Coauthors, 2002: An intercomparison of cloud-resolving models with the ARM summer 1997 IOP data. Quart. J. Roy. Meteor. Soc., 128, 593624, doi:10.1256/003590002321042117.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 63 7
PDF Downloads 78 35 3