Wintertime Subkilometer Numerical Forecasts of Near-Surface Variables in the Canadian Rocky Mountains

Vincent Vionnet Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada, and Météo-France/CNRS, CNRM-GAME UMR3589, CEN, St. Martin d’Hères, France

Search for other papers by Vincent Vionnet in
Current site
Google Scholar
PubMed
Close
,
Stéphane Bélair Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Stéphane Bélair in
Current site
Google Scholar
PubMed
Close
,
Claude Girard Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Claude Girard in
Current site
Google Scholar
PubMed
Close
, and
André Plante Canadian Meteorological Centre, Meteorological Service of Canada, Environment Canada, Dorval, Quebec, Canada

Search for other papers by André Plante in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Numerical weather prediction (NWP) systems operational at many national centers are nowadays used at the kilometer scale. The next generation of NWP models will provide forecasts at the subkilometer scale. Large impacts are expected in mountainous terrain characterized by highly variable orography. This study investigates the ability of the Canadian NWP system to provide an accurate forecast of near-surface variables at the subkilometer scale in the Canadian Rocky Mountains in wintertime when the region is fully covered by snow. Observations collected at valley and high-altitude stations are used to evaluate forecast accuracy at three different grid spacing (2.5, 1, and 0.25 km) over a period of 15 days. Decreasing grid spacing was found to improve temperature forecasts at high-altitude stations because of better orography representation. In contrast, no improvement is obtained at valley stations due to an inability of the model to fully capture at all resolutions the intensity of valley cold pools forming during nighttime. Errors in relative humidity reveal that the model tends to overestimate relative humidity at all resolutions, without improvement with decreasing grid spacing. Wind speed forecasts show large improvements with decreasing grid spacing for high-altitude stations exposed to or sheltered from wind. However, no systematic improvement with decreasing grid spacing is found for all stations, which is similar to previous studies. In addition, the model’s sensitivity at subkilometer grid spacing is investigated by evaluating the effects of (i) accounting for additional drag generated by subgrid orographic features, (ii) considering slope angle and aspect on surface radiation, and (iii) using high-resolution initialization for the surface fields.

Corresponding author address: Vincent Vionnet, Centre d’Etudes de la Neige, Domaine Universitaire 1441 rue de la Piscine F-38400, Saint Martin d’Hères, France. E-mail: vincent.vionnet@meteo.fr

Abstract

Numerical weather prediction (NWP) systems operational at many national centers are nowadays used at the kilometer scale. The next generation of NWP models will provide forecasts at the subkilometer scale. Large impacts are expected in mountainous terrain characterized by highly variable orography. This study investigates the ability of the Canadian NWP system to provide an accurate forecast of near-surface variables at the subkilometer scale in the Canadian Rocky Mountains in wintertime when the region is fully covered by snow. Observations collected at valley and high-altitude stations are used to evaluate forecast accuracy at three different grid spacing (2.5, 1, and 0.25 km) over a period of 15 days. Decreasing grid spacing was found to improve temperature forecasts at high-altitude stations because of better orography representation. In contrast, no improvement is obtained at valley stations due to an inability of the model to fully capture at all resolutions the intensity of valley cold pools forming during nighttime. Errors in relative humidity reveal that the model tends to overestimate relative humidity at all resolutions, without improvement with decreasing grid spacing. Wind speed forecasts show large improvements with decreasing grid spacing for high-altitude stations exposed to or sheltered from wind. However, no systematic improvement with decreasing grid spacing is found for all stations, which is similar to previous studies. In addition, the model’s sensitivity at subkilometer grid spacing is investigated by evaluating the effects of (i) accounting for additional drag generated by subgrid orographic features, (ii) considering slope angle and aspect on surface radiation, and (iii) using high-resolution initialization for the surface fields.

Corresponding author address: Vincent Vionnet, Centre d’Etudes de la Neige, Domaine Universitaire 1441 rue de la Piscine F-38400, Saint Martin d’Hères, France. E-mail: vincent.vionnet@meteo.fr
Save
  • Arnold, D., and Coauthors, 2012: High resolution modelling in complex terrain. Report on the HiRCoT 2012 Workshop, Vienna, Austria, 21–23 February 2012, BOKU-MET Rep. 21, 42 pp. [Available online at http://www.boku.ac.at/met/report/BOKU-Met_Report_21_online.pdf.]

  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887–3905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. Pinty, and C. Fravalo, 1992: A model of marine boundary layer cloudiness for mesoscale applications. J. Atmos. Sci., 49, 17231744, doi:10.1175/1520-0469(1992)049<1723:AMOMBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. Cuijpers, P. Mascart, and P. Trouilhet, 1995: Modeling of trade wind cumuli with a low-order turbulence model: Toward a unified description of Cu and Sc clouds in meteorological models. J. Atmos. Sci., 52, 455463, doi:10.1175/1520-0469(1995)052<0455:MOTWCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., L.-P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., R. Brown, J. Mailhot, B. Bilodeau, and L.-P. Crevier, 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., J. Mailhot, C. Girard, and P. Vaillancourt, 2005: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Wea. Rev., 133, 19381960, doi:10.1175/MWR2958.1.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 13271347, doi:10.1256/qj.03.73.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., J. Côté, and J. Mailhot, 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117, 17261750, doi:10.1175/1520-0493(1989)117<1726:IOATBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., and Coauthors, 2002: The real-time ultrafinescale forecast support during the special observing period of the MAP. Bull. Amer. Meteor. Soc., 83, 85109, doi:10.1175/1520-0477(2002)083<0085:TRTUFS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bernier, N. B., and S. Bélair, 2012: High horizontal and vertical resolution limited-area model: Near-surface and wind energy forecast applications. J. Appl. Meteor. Climatol., 51, 10611078, doi:10.1175/JAMC-D-11-0197.1.

    • Search Google Scholar
    • Export Citation
  • Bernier, N. B., S. Bélair, B. Bilodeau, and L. Tong, 2011: Near-surface and land surface forecast system of the Vancouver 2010 Winter Olympic and Paralympic Games. J. Hydrometeor., 12, 508530, doi:10.1175/2011JHM1250.1.

    • Search Google Scholar
    • Export Citation
  • Billings, B. J., V. Grubišic, and R. D. Borys, 2006: Maintenance of a mountain valley cold pool: A numerical study. Mon. Wea. Rev., 134, 22662278, doi:10.1175/MWR3180.1.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, doi:10.1029/JZ067i008p03095.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta–scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., S. Bélair, V. Fortin, B. Bilodeau, D. Charpentier, and I. Doré, 2010: Evaluation of snowpack simulations over the Canadian Rockies with an experimental hydrometeorological modeling system. J. Hydrometeor., 11, 11231140, doi:10.1175/2010JHM1274.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., 2010: Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry. Remote Sens. Environ., 114, 16101627, doi:10.1016/j.rse.2010.02.016.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., F. L. Ludwig, and R. L. Street, 2004: Stably stratified flows near a notched transverse ridge across the Salt Lake valley. J. Appl. Meteor., 43, 1308–1328, doi:10.1175/1520-0450(2004)043<1308:SSFNAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. Climatol., 45, 6386, doi:10.1175/JAM2322.1.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., S. F. de Wekker, and B. J. Snyder, Eds., 2013: Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer, 750 pp.

  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Dombrowski-Etchevers, I., L. Quéno, F. Karbou, J.-F. Ribaud, and Y. Durand, 2013: Test and potentialities of a new numerical weather forecasting non-hydrostatic model for hydrology and snowcover simulations. Proc. Int. Snow Science Workshop, Grenoble-Chamonix Mont Blanc, France, 1309–1314.

  • Dumont, M., Y. Durand, Y. Arnaud, and D. Six, 2012: Variational assimilation of albedo in a snowpack model and reconstruction of the spatial mass-balance distribution of an alpine glacier. J. Glaciol., 58, 151164, doi:10.3189/2012JoG11J163.

    • Search Google Scholar
    • Export Citation
  • Durand, Y., E. Brun, L. Merindol, G. Guyomarc’h, B. Lesaffre, and E. Martin, 1993: A meteorological estimation of relevant parameters for snow models. Ann. Glaciol., 18, 6571.

    • Search Google Scholar
    • Export Citation
  • Erfani, A., J. Mailhot, S. Gravel, M. Desgagné, P. King, D. Sills, N. McLennan, and D. Jacob, 2005: The high resolution limited area version of the Global Environmental Multiscale model and its potential operational applications. Preprints, 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., 1M.4. [Available online at https://ams.confex.com/ams/pdfpapers/97308.pdf.]

  • Fillion, L., and Coauthors, 2010: The Canadian regional data assimilation and forecasting system. Wea. Forecasting, 25, 16451669, doi:10.1175/2010WAF2222401.1.

    • Search Google Scholar
    • Export Citation
  • Girard, C., and Coauthors, 2014: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 1183–1196, doi:10.1175/MWR-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Girard, C., R. Benoit, and M. Desgagné, 2005: Finescale topography and the MC2 dynamics kernel. Mon. Wea. Rev., 133, 1463–1477, doi:10.1175/MWR2931.1.

    • Search Google Scholar
    • Export Citation
  • Golding, D. L., 1978: Calculated snowpack evaporation during chinooks along the eastern slopes of the Rocky Mountains in Alberta. J. Appl. Meteor., 17, 16471651, doi:10.1175/1520-0450(1978)017<1647:CSEDCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, K. A., W. J. Steenburgh, and D. J. Onton, 2005: Model forecast improvements with decreased horizontal grid spacing over finescale intermountain orography during the 2002 Olympic Winter Games. Wea. Forecasting, 20, 558576, doi:10.1175/WAF865.1.

    • Search Google Scholar
    • Export Citation
  • Hauge, G., and L. R. Hole, 2003: Implementation of slope irradiance in Mesoscale Model version 5 and its effect on temperature and wind fields during the breakup of a temperature inversion. J. Geophys. Res., 108, 4058, doi:10.1029/2002JD002575.

    • Search Google Scholar
    • Export Citation
  • Helgason, W., and J. W. Pomeroy, 2012: Characteristics of the near-surface boundary layer within a mountain valley during winter. J. Appl. Meteor. Climatol., 51, 583597, doi:10.1175/JAMC-D-11-058.1.

    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, doi:10.1175/JAS-D-11-061.1.

    • Search Google Scholar
    • Export Citation
  • Horvath, K., D. Koracin, R. Vellore, J. Jiang, and R. Belu, 2012: Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res., 117, D11111, doi:10.1029/2012JD017432.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, J. Pinto, and C. Alexander, 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating high-resolution rapid refresh model. Wea. Forecasting, 28, 921–939, doi:10.1175/WAF-D-12-00085.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300316, doi:10.1175/JAMC-D-11-084.1.

    • Search Google Scholar
    • Export Citation
  • Kiktev, D., and Coauthors, 2013: Development of forecasting technologies for meteorological support of the Sochi-2014 Winter Olympic Games. Russ. Meteor. Hydrol., 38, 653660, doi:10.3103/S1068373913100014.

    • Search Google Scholar
    • Export Citation
  • Leroyer, S., S. Bélair, S. Z. Husain, and J. Mailhot, 2014: Subkilometer numerical weather prediction in an urban coastal area: A case study over the Vancouver metropolitan area. J. Appl. Meteor. Climatol., 53, 1433–1453, doi:10.1175/JAMC-D-13-0202.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. Barker, 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309, doi:10.1175/JAS-3396.1.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2010: Environment Canada’s experimental numerical weather prediction systems for the Vancouver 2010 Winter Olympic and Paralympic Games. Bull. Amer. Meteor. Soc., 91, 10731085, doi:10.1175/2010BAMS2913.1.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., J. Milbrandt, A. Giguère, R. McTaggart-Cowan, A. Erfani, B. Denis, A. Glazer, and M. Vallée, 2014: An experimental high-resolution forecast system during the Vancouver 2010 Winter Olympic and Paralympic Games. Pure Appl. Geophys., 171, 209–229, doi:10.1007/s00024-012-0520-6.

    • Search Google Scholar
    • Export Citation
  • Mason, P., and A. Brown, 1999: On subgrid models and filter operations in large eddy simulations. J. Atmos. Sci., 56, 21012114, doi:10.1175/1520-0469(1999)056<2101:OSMAFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, and J. A. Milbrandt, 2010: Development and tropical transition of an Alpine lee cyclone. Part II: Orographic influence on the development pathway. Mon. Wea. Rev., 138, 23082326, doi:10.1175/2009MWR3148.1.

    • Search Google Scholar
    • Export Citation
  • Michioka, T., and F. K. Chow, 2008: High-resolution large-eddy simulations of scalar transport in atmospheric boundary layer flow over complex terrain. J. Appl. Meteor. Climatol., 47, 3150–3169, doi:10.1175/2008JAMC1941.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J., and M. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Miller, M., T. Palmer, and R. Swinbank, 1989: Parametrization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40, 84109, doi:10.1007/BF01027469.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35733587, doi:10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Müller, M. D., and D. Scherer, 2005: A grid- and subgrid-scale radiation parameterization of topographic effects for mesoscale weather forecast models. Mon. Wea. Rev., 133, 14311442, doi:10.1175/MWR2927.1.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raderschall, N., M. Lehning, and C. Schär, 2008: Fine-scale modeling of the boundary layer wind field over steep topography. Water Resour. Res.,44, W09425, doi:10.1029/2007WR006544.

  • Rife, D. L., and C. A. Davis, 2005: Verification of temporal variations in mesoscale numerical wind forecasts. Mon. Wea. Rev., 133, 3368–3381, doi:10.1175/MWR3052.1.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., C. A. Davis, Y. Liu, and T. T. Warner, 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132, 25532569, doi:10.1175/MWR2801.1.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary-layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, doi:10.1002/qj.71.

    • Search Google Scholar
    • Export Citation
  • Schweizer, J., J. B. Jamieson, and M. Schneebeli, 2003: Snow avalanche formation. Rev. Geophys., 41, 1016, doi:10.1029/2002RG000123.

  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., R. E. Stewart, G. Thompson, and J. M. Thériault, 2013: Microphysical processes within winter orographic cloud and precipitation systems. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and J. B. Snyder, Eds., Springer, 345–408.

  • Vionnet, V., E. Martin, V. Masson, G. Guyomarc’h, F. Naaim-Bouvet, A. Prokop, Y. Durand, and C. Lac, 2014: Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. The Cryosphere, 8, 395415, doi:10.5194/tc-8-395-2014.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., F. K. Chow, M. W. Rotach, R. L. Street, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: Flow structure and heat budgets. J. Appl. Meteor. Climatol., 45, 87–107, doi:10.1175/JAM2323.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., K. J. Allwine, L. J. Fritschen, M. M. Orgill, and J. R. Simpson, 1989: Deep valley radiation and surface energy budget microclimates. Part I: Radiation. J. Appl. Meteor., 28, 414426, doi:10.1175/1520-0450(1989)028<0414:DVRASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and J. Mittelstadt, 2001: Cold pools in the Columbia Basin. Wea. Forecasting, 16, 432–447, doi:10.1175/1520-0434(2001)016<0432:CPITCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the terra incognita. J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., J.-P. Gauthier, and A. Leroux, 2008: GenPhysX: A user’s guide to input/output and methods. CMC Tech. Rep., 54 pp.

  • Zängl, G., 2002: An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography. Mon. Wea. Rev., 130, 14231432, doi:10.1175/1520-0493(2002)130<1423:AIMFCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2005: Formation of extreme cold-air pools in elevated sinkholes: An idealized numerical process study. Mon. Wea. Rev., 133, 925941, doi:10.1175/MWR2895.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, doi:10.1175/WAF-D-12-00109.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and F. K. Chow, 2013: Meso- and fine-scale modeling over complex terrain: Parameterizations and applications. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and J. B. Snyder, Eds., Springer, 591–653, doi:10.1007/978-94-007-4098-3_10.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 98 3
PDF Downloads 138 44 4