Moistening Processes before the Convective Initiation of Madden–Julian Oscillation Events during the CINDY2011/DYNAMO Period

Tomoe Nasuno Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan

Search for other papers by Tomoe Nasuno in
Current site
Google Scholar
PubMed
Close
,
Tim Li International Pacific Research Center, and Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
, and
Kazuyoshi Kikuchi International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Kazuyoshi Kikuchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convective initiation processes in the Madden–Julian oscillation (MJO) events that occurred during the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/Dynamics of the Madden–Julian Oscillation (DYNAMO) intensive observation period (IOP) were investigated. Two episodes that were initiated in mid-October (MJO1) and mid-November (MJO2) 2011 were analyzed using European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and satellite data. Moisture budgets in the equatorial Indian Ocean (IO) domain (10°S–10°N, 60°–90°E) were analyzed in detail by separating each variable into basic-state (>80 day), intraseasonal (20–80 day), and high-frequency (<20 day) variations. The quality of the ECMWF reanalysis was also evaluated against the sounding data collected during the field campaign.

In both MJO events, the increase in precipitable water started 8–9 days prior to the convective initiation. Moisture advection decomposition revealed that advection of basic moisture by intraseasonal easterly anomalies and of intraseasonal moisture anomalies by the basic zonal wind were pronounced in these two events. The nonlinear high-frequency terms in the meridional moisture advection were the same order of magnitude as the primary term in the middle troposphere, implying systematic upscale transport of moisture. As a possible mechanism of the acceleration of easterly anomalies, amplification of off-equatorial Rossby wave trains that intruded into the equatorial zone was detected during the preconditioning periods in both MJO events.

Denotes Open Access content.

Corresponding author address: Tomoe Nasuno, Japan Agency for Marine–Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. E-mail: nasuno@jamstec.go.jp

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Convective initiation processes in the Madden–Julian oscillation (MJO) events that occurred during the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/Dynamics of the Madden–Julian Oscillation (DYNAMO) intensive observation period (IOP) were investigated. Two episodes that were initiated in mid-October (MJO1) and mid-November (MJO2) 2011 were analyzed using European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and satellite data. Moisture budgets in the equatorial Indian Ocean (IO) domain (10°S–10°N, 60°–90°E) were analyzed in detail by separating each variable into basic-state (>80 day), intraseasonal (20–80 day), and high-frequency (<20 day) variations. The quality of the ECMWF reanalysis was also evaluated against the sounding data collected during the field campaign.

In both MJO events, the increase in precipitable water started 8–9 days prior to the convective initiation. Moisture advection decomposition revealed that advection of basic moisture by intraseasonal easterly anomalies and of intraseasonal moisture anomalies by the basic zonal wind were pronounced in these two events. The nonlinear high-frequency terms in the meridional moisture advection were the same order of magnitude as the primary term in the middle troposphere, implying systematic upscale transport of moisture. As a possible mechanism of the acceleration of easterly anomalies, amplification of off-equatorial Rossby wave trains that intruded into the equatorial zone was detected during the preconditioning periods in both MJO events.

Denotes Open Access content.

Corresponding author address: Tomoe Nasuno, Japan Agency for Marine–Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. E-mail: nasuno@jamstec.go.jp

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014a: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, K. Yoneyama, and R. K. Taft, 2014b: Mitigation of Sri Lanka island effects in Colombo sounding data and its impact on DYNAMO analyses. J. Meteor. Soc. Japan, 92, 385–405, doi:10.2151/jmsj.2014-407.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DePasquale, A., C. Schumacher, and A. Rapp, 2014: Radar observations of MJO and Kelvin wave interactions during DYNAMO/CINDY2011/AMIE. J. Geophys. Res. Atmos., 119, 63476367, doi:10.1002/2013JD021031.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., and T. Yasunari, 2013: Structure and characteristics of submonthly-scale waves along the Indian Ocean ITCZ. Climate Dyn., 40, 18191839, doi:10.1007/s00382-012-1417-x.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteor. Soc., 91, 1247–1258, doi:10.1175/2010BAMS2816.1.

  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823839, doi:10.1175/1520-0469(1990)047<0823:TIOATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927941, doi:10.1175/2010JCLI3833.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51, 10891099, doi:10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, doi:10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 37773795, doi:10.1175/JCLI3516.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1980: Diagnosis of convective and mesoscale motions during phase III of GATE. J. Atmos. Sci., 37, 733753, doi:10.1175/1520-0469(1980)037<0733:DOCAMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert Jr., and M. Katsumata, 2014: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., doi:10.1175/JAS-D-14-0202.1, in press.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2014: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 13261343, doi:10.1175/MWR-D-13-00159.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., 2013: An introduction to combined Fourier–wavelet transform and its application to convectively coupled equatorial waves. Climate Dyn., 43, 1339–1356, doi:10.1007/s00382-013-1949-8.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2003: Equatorial circumnavigation of moisture signal associated with the Madden–Julian oscillation (MJO) during boreal winter. J. Meteor. Soc. Japan, 81, 851869, doi:10.2151/jmsj.81.851.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, doi:10.1175/MWR-D-13-00301.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2007: Intraseasonal variability in a dry atmospheric model. J. Atmos. Sci., 64, 24222441, doi:10.1175/JAS3955.1.

    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70, 26962712, doi:10.1175/JAS-D-13-029.1.

    • Search Google Scholar
    • Export Citation
  • Ling, J., P. Bauer, P. Bechtold, A. Beljaars, R. Forbes, F. Vitart, M. Ulate, and C. Zhang, 2014: Global versus local MJO forecast skill of the ECMWF model during DYNAMO. Mon. Wea. Rev., 142, 22282247, doi:10.1175/MWR-D-13-00292.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, 5, doi:10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, doi:10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677, doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McNab, A. L., and A. K. Betts, 1978: Mesoscale budget study of cumulus convection. Mon. Wea. Rev., 106, 13171331, doi:10.1175/1520-0493(1978)106<1317:AMBSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyakawa, T., and Coauthors, 2014: Madden-Julian oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nat. Commun., 5, 3769, doi:10.1038/ncomms4769.

    • Search Google Scholar
    • Export Citation
  • Nagarajan, B., and A. Aiyyer, 2004: Performance of the ECMWF operational analyses over the tropical Indian Ocean. Mon. Wea. Rev., 132, 22752282, doi:10.1175/1520-0493(2004)132<2275:POTEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., 2013: Forecast skill of Madden–Julian oscillation events in a global nonhydrostatic model during the CINDY2011/DYNAMO observation period. SOLA, 9, 6973.

    • Search Google Scholar
    • Export Citation
  • Pan, L.-L., and T. Li, 2007: Interactions between the tropical ISO and midlatitude low-frequency flow. Climate Dyn., 31, 375–388, doi:10.1007/s00382-007-0272-7.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2013: The cloud population and onset of the Madden–Julian oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and C. Zhang, 2010: A case study of the mechanisms of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, doi:10.1175/2009JAS3059.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and T. Li, 2013: Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. J. Atmos. Sci., 70, 876893, doi:10.1175/JAS-D-12-0153.1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud-resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1.

    • Search Google Scholar
    • Export Citation
  • Seo, K. H., W. Q. Wang, J. Gottschalck, Q. Zhang, J. K. E. Schemm, W. R. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, doi:10.1175/2008JCLI2421.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, doi:10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, doi:10.1175/JCLI-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400, doi:10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L. K. K., K. Kodera, and W. Chen, 2012: Observed triggering of tropical convection by a cold surge: Implications for MJO initiation. Quart. J. Roy. Meteor. Soc., 138, 17401750, doi:10.1002/qj.1905.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and Coauthors, 2008: MISMO field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89, 18891903, doi:10.1175/2008BAMS2519.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., J. Gottschalck, E. D. Maloney, M. W. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Search Google Scholar
    • Export Citation
  • Zhao, C.-B., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, doi:10.1175/JCLI-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, doi:10.1175/JAS-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 519 222 4
PDF Downloads 137 46 1