Snow Growth and Transport Patterns in Orographic Storms as Estimated from Airborne Vertical-Plane Dual-Doppler Radar Data

Bart Geerts Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Yang Yang Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Yang Yang in
Current site
Google Scholar
PubMed
Close
,
Roy Rasmussen Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Samuel Haimov Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Samuel Haimov in
Current site
Google Scholar
PubMed
Close
, and
Binod Pokharel Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Binod Pokharel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Airborne vertical-plane dual-Doppler cloud radar data, collected on wind-parallel flight legs over a mountain in Wyoming during 16 winter storms, are used to analyze the growth, transport, and sedimentation of snow. In all storms the wind is rather strong, such that the flow is unblocked. The sampled clouds are mixed phase, shallow, and generally produce snowfall over the mountain only. The 2D scatterers’ mean motion in the vertical along-track plane below flight level is synthesized using one radar antenna pointing to nadir, and one 30° forward of nadir. This yields instantaneous cross-mountain hydrometeor streamlines.

The dynamics of the orographic flow dominate the precipitation patterns across the mountain. Three patterns are distinguished: the first two contain small convective cells, either boundary layer (BL) convection or elevated convection, the latter likely due to the release of potential instability in orographically lifted air. In these patterns the cross-mountain flow is relatively undisturbed. Precipitation from BL convection falls mostly on the windward side but precipitation from elevated convection may fall mostly in the lee. The third pattern is marked by more stratified flow, often with vertically propagating mountain waves, and with strong, plunging flow in the lee, resulting in rapid clearing of the storm across the crest and occasionally a hydraulic jump. In this case, most snow tends to fall upwind of the crest, although a shallow, sublimating snow “foot” is often seen over the leeward slopes.

Corresponding author address: Bart Geerts, Dept. of Atmospheric Science, University of Wyoming, Laramie, WY 82071. E-mail: geerts@uwyo.edu

Abstract

Airborne vertical-plane dual-Doppler cloud radar data, collected on wind-parallel flight legs over a mountain in Wyoming during 16 winter storms, are used to analyze the growth, transport, and sedimentation of snow. In all storms the wind is rather strong, such that the flow is unblocked. The sampled clouds are mixed phase, shallow, and generally produce snowfall over the mountain only. The 2D scatterers’ mean motion in the vertical along-track plane below flight level is synthesized using one radar antenna pointing to nadir, and one 30° forward of nadir. This yields instantaneous cross-mountain hydrometeor streamlines.

The dynamics of the orographic flow dominate the precipitation patterns across the mountain. Three patterns are distinguished: the first two contain small convective cells, either boundary layer (BL) convection or elevated convection, the latter likely due to the release of potential instability in orographically lifted air. In these patterns the cross-mountain flow is relatively undisturbed. Precipitation from BL convection falls mostly on the windward side but precipitation from elevated convection may fall mostly in the lee. The third pattern is marked by more stratified flow, often with vertically propagating mountain waves, and with strong, plunging flow in the lee, resulting in rapid clearing of the storm across the crest and occasionally a hydraulic jump. In this case, most snow tends to fall upwind of the crest, although a shallow, sublimating snow “foot” is often seen over the leeward slopes.

Corresponding author address: Bart Geerts, Dept. of Atmospheric Science, University of Wyoming, Laramie, WY 82071. E-mail: geerts@uwyo.edu
Save
  • Abbs, D. J., and J. B. Jensen, 1993: Numerical modeling of orographically forced postfrontal rain. Mon. Wea. Rev., 121, 189206, doi:10.1175/1520-0493(1993)121<0189:NMOOFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chater, A. M., and A. P. Sturman, 1998: Atmospheric conditions influencing the spillover rainfall to the lee of the Southern Alps of New Zealand. Int. J. Climatol., 18, 7792, doi:10.1002/(SICI)1097-0088(199801)18:1<77::AID-JOC218>3.0.CO;2-M.

    • Search Google Scholar
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, R. Rasmussen, and D. Breed, 2014: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations. J. Appl. Meteor. Climatol., 53, 22642286, doi:10.1175/JAMC-D-14-0017.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, doi:10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Y. Lin, S. Medina, and B. F. Smull, 2008: Orographic modification of convection and flow kinematics by the Oregon Coast Range and Cascades during IMPROVE-2. Mon. Wea. Rev., 136, 38943916, doi:10.1175/2008MWR2369.1.

    • Search Google Scholar
    • Export Citation
  • Cunningham, J. G., and S. E. Yuter, 2014: Instability characteristics of radar-derived mesoscale organization modes within cool-season precipitation near Portland, Oregon. Mon. Wea. Rev., 142, 17381757, doi:10.1175/MWR-D-13-00133.1.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and S. Haimov, 2006: A high-resolution dual-Doppler technique for fixed multi-antenna airborne radar. IEEE Trans. Geosci. Remote Sens., 44, 34753489, doi:10.1109/TGRS.2006.881745.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., and B. Geerts, 2010: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part II: Interaction with deep convection. Mon. Wea. Rev., 138, 36033622, doi:10.1175/2010MWR3318.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2003a: Lee waves and mountain waves. Encyclopedia of the Atmospheric Sciences, J. R. Holton, Ed., Academic Press, 1161–1169.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2003b: Downslope winds. Encyclopedia of the Atmospheric Sciences, J. R. Holton, Ed., Academic Press, 644–650.

  • Fraser, A. B., R. C. Easter, and P. V. Hobbs, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain. Part I: Airflow model. J. Atmos. Sci., 30, 801812, doi:10.1175/1520-0469(1973)030<0801:ATSOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., and C. Schär, 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62, 28102828, doi:10.1175/JAS3512.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by airborne radar. Mon. Wea. Rev., 134, 251272, doi:10.1175/MWR3056.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, Y. Yang, R. Rasmussen, and D. Breed, 2010: An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J. Atmos. Sci., 67, 32863302, doi:10.1175/2010JAS3496.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary-layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 30, 813823, doi:10.1175/JAS-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Jiang, Q. F., and R. Smith, 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 15431559, doi:10.1175/2995.1.

  • Kirshbaum, D. J., and D. R. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, doi:10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., G. H. Bryan, R. Rotunno, and D. R. Durran, 2007: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64, 15301549, doi:10.1175/JAS3924.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Rutledge, R. Rasmussen, P. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow generating cells. J. Appl. Meteor. Climatol., 53, 1636–1658, doi:10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Kusunoki, K., M. Murakami, M. Hoshimoto, N. Orikasa, Y. Yamada, H. Mizuno, K. Hamazu, and H. Watanabe, 2004: The characteristics and evolution of orographic snow clouds under weak cold advection. Mon. Wea. Rev., 132, 174191, doi:10.1175/1520-0493(2004)132<0174:TCAEOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology. Amer. Meteor. Soc., 345 pp.

  • Lee, R. R., 1984: Two case studies of wintertime cloud systems over the Colorado Rockies. J. Atmos. Sci., 41, 868878, doi:10.1175/1520-0469(1984)041<0868:TCSOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., 2007: Dynamics of orographic precipitation. Mesoscale Dynamics, Y.-L. Lin, Ed., Cambridge University Press, 442–478.

  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1980: Winter storms over the San Juan Mountains. Part I: Dynamical processes. J. Appl. Meteor., 19, 913926, doi:10.1175/1520-0450(1980)019<0913:WSOTSJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., and P. J. Dawson, 1984: Low-level airflow in southern Wyoming during wintertime. Mon. Wea. Rev., 112, 12461262, doi:10.1175/1520-0493(1984)112<1246:LLAISW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Medina, S., B. F. Smull, R. A. Houze Jr., and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, doi:10.1175/JAS3554.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, doi:10.1175/JAS-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., and G. Vali, 2011: Evaluation of collocated measurements of radar reflectivity and particle sizes in ice clouds. J. Appl. Meteor. Climatol., 50, 21042119, doi:10.1175/JAMC-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., and B. Geerts, 2014: The impact of glaciogenic seeding on snowfall from shallow orographic clouds over the Medicine Bow Mountains in Wyoming. J. Wea. Modif., 46, 829.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, and X. Jing, 2014a: The impact of ground-based glaciogenic seeding on orographic clouds and precipitation: A multisensor case study. J. Appl. Meteor. Climatol., 53, 890909, doi:10.1175/JAMC-D-13-0290.1.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, X. Jing, K. Friedrich, J. Aikins, D. Breed, R. Rasmussen, and A. Huggins, 2014b: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A multi-sensor case study of shallow precipitating orographic cumuli. Atmos. Res., 147–148,162182, doi:10.1016/j.atmosres.2014.05.014.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., M. Dixon, S. Vasiloff, F. Hage, S. Knight, J. Vivekanandan, and M. Xu, 2003: Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. J. Appl. Meteor., 42, 2036, doi:10.1175/1520-0450(2003)042<0020:SNUART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze Jr., 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830, doi:10.1002/qj.67.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, and J. D. Fuller, 2011: The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado. J. Appl. Meteor. Climatol., 50, 604625, doi:10.1175/2010JAMC2594.1.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Shafer, J. C., W. J. Steenburgh, J. A. W. Cox, and J. P. Monteverdi, 2006: Terrain influences on synoptic storm structure and mesoscale precipitation distribution during IPEX IOP3. Mon. Wea. Rev., 134, 478497, doi:10.1175/MWR3051.1.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., D. S. Wratt, R. D. Henderson, and W. R. Gray, 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36, 428442, doi:10.1175/1520-0450(1997)036<0428:FATDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270274, doi:10.1111/j.1600-0870.1989.tb00381.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, doi:10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, doi:10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2003: One hundred inches in one hundred hours: Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, 18, 10181036, doi:10.1175/1520-0434(2003)018<1018:OHIIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vali, G., D. Leon, and J. R. Snider, 2012: Ground-layer snow clouds. Quart. J. Roy. Meteor. Soc., 138, 15071525, doi:10.1002/qj.1882.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., 2014: Snow spatial distribution patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. M.S. thesis, University of Wyoming, 47 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 552 174 12
PDF Downloads 316 102 12