Beyond Weather Time-Scale Prediction for Hurricane Sandy and Super Typhoon Haiyan in a Global Climate Model

Baoqiang Xiang * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Baoqiang Xiang in
Current site
Google Scholar
PubMed
Close
,
Shian-Jiann Lin NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Shian-Jiann Lin in
Current site
Google Scholar
PubMed
Close
,
Ming Zhao * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Ming Zhao in
Current site
Google Scholar
PubMed
Close
,
Shaoqing Zhang NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Shaoqing Zhang in
Current site
Google Scholar
PubMed
Close
,
Gabriel Vecchi NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel Vecchi in
Current site
Google Scholar
PubMed
Close
,
Tim Li International Pacific Research Center, Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
,
Xianan Jiang Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Xianan Jiang in
Current site
Google Scholar
PubMed
Close
,
Lucas Harris NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Lucas Harris in
Current site
Google Scholar
PubMed
Close
, and
Jan-Huey Chen * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Jan-Huey Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While tropical cyclone (TC) prediction, in particular TC genesis, remains very challenging, accurate prediction of TCs is critical for timely preparedness and mitigation. Using a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the authors studied the predictability of two destructive landfall TCs: Hurricane Sandy in 2012 and Super Typhoon Haiyan in 2013. Results demonstrate that the geneses of these two TCs are highly predictable with the maximum prediction lead time reaching 11 days. The “beyond weather time scale” predictability of tropical cyclogenesis is primarily attributed to the model’s skillful prediction of the intraseasonal Madden–Julian oscillation (MJO) and the westward propagation of easterly waves. Meanwhile, the landfall location and time can be predicted one week ahead for Sandy’s U.S landfall, and two weeks ahead for Haiyan’s landing in the Philippines. The success in predicting Sandy and Haiyan, together with low false alarms, indicates the potential of using the GFDL coupled model for extended-range predictions of TCs.

Corresponding author address: Baoqiang Xiang, GFDL, UCAR, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: baoqiang.xiang@noaa.gov

Abstract

While tropical cyclone (TC) prediction, in particular TC genesis, remains very challenging, accurate prediction of TCs is critical for timely preparedness and mitigation. Using a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the authors studied the predictability of two destructive landfall TCs: Hurricane Sandy in 2012 and Super Typhoon Haiyan in 2013. Results demonstrate that the geneses of these two TCs are highly predictable with the maximum prediction lead time reaching 11 days. The “beyond weather time scale” predictability of tropical cyclogenesis is primarily attributed to the model’s skillful prediction of the intraseasonal Madden–Julian oscillation (MJO) and the westward propagation of easterly waves. Meanwhile, the landfall location and time can be predicted one week ahead for Sandy’s U.S landfall, and two weeks ahead for Haiyan’s landing in the Philippines. The success in predicting Sandy and Haiyan, together with low false alarms, indicates the potential of using the GFDL coupled model for extended-range predictions of TCs.

Corresponding author address: Baoqiang Xiang, GFDL, UCAR, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: baoqiang.xiang@noaa.gov
Save
  • Barnes, E. A., L. M. Polvani, and A. H. Sobel, 2013: Model projections of atmospheric steering of Sandy-like superstorms. Proc. Natl. Acad. Sci.,110, 15 211–15 215, doi:10.1073/pnas.1308732110.

  • Belanger, J. I., J. A. Curry, and P. J. Webster, 2010: Predictability of North Atlantic tropical cyclone activity on intraseasonal time scales. Mon. Wea. Rev., 138, 43624374, doi:10.1175/2010MWR3460.1.

    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., P. J. Webster, J. A. Curry, and M. T. Jelinek, 2012: Extended prediction of North Indian Ocean tropical cyclones. Wea. Forecasting, 27, 757769, doi:10.1175/WAF-D-11-00083.1.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven III, 2013: Tropical cyclone report: Hurricane Sandy (AL182012) 22–29 October 2012. Tech. Rep. AL182012, NOAA/National Hurricane Center, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]

  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, doi:10.1175/2009JAS3101.1.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, doi:10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and J. A. Renwick, 2014: The climatological relationship between tropical cyclones in the southwest Pacific and the Madden–Julian Oscillation. Int. J. Climatol., doi:10.1002/joc.4012, in press.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., M. S. Jordan, and F. Vitart, 2010: Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model. Asia-Pac. J. Atmos. Sci., 46, 135153, doi:10.1007/s13143-010-0013-4.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The relationship between tropical waves and tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, doi:10.1175/MWR3204.1.

    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, doi:10.1175/2011MWR3618.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and P. Hsu, 2011: Extended-range ensemble forecasting of tropical cyclogenesis in the northern Indian Ocean: Modulation of Madden-Julian Oscillation. Geophys. Res. Lett., 38, L15803, doi:10.1029/2011GL048249.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2008: The global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophys. Res. Lett., 35, L22808, doi:10.1029/2008GL036003.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8, 12841295, doi:10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, doi:10.1175/JCLI-D-14-00112.1, in press.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 65246538, doi:10.1175/JCLI-D-11-00531.1.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2012: One Sandy forecast a bigger winner than others. Science, 338, 736737, doi:10.1126/science.338.6108.736.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Lander, M., C. Guard, and S. Camargo, 2014: Super Typhoon Haiyan [in “State of the Climate in 2013”]. Bull. Amer. Meteor. Soc.,95, S112–S114, doi:10.1175/2014BAMSStateoftheClimate.1.

  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, doi:10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leroy, A., and M. C. Wheeler, 2008: Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 136, 36373654, doi:10.1175/2008MWR2426.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in Western North Pacific. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, Inc., 61–94.

  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian Oscillation. J. Meteor. Soc. Japan, 72, 401411.

    • Search Google Scholar
    • Export Citation
  • Malakoff, D., 2012: Scientists assess damage from Sandy’s deadly punch. Science, 338, 728729, doi:10.1126/science.338.6108.728.

  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, doi:10.1126/science.287.5460.2002.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Wea. Rev., 128, 40974107, doi:10.1175/1520-0493(2000)129<4097:TABIOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B. Fu, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 10471066, doi:10.1175/2011MWR3617.1.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, doi:10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaevitz, D. A., and Coauthors, 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst., doi:10.1002/2014MS000372, in press.

    • Search Google Scholar
    • Export Citation
  • Tam, C.-Y., and T. Li, 2006: The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the western Pacific. Mon. Wea. Rev., 134, 16301646, doi:10.1175/MWR3147.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 7994–8016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2009: Impact of the Madden–Julian Oscillation on tropical tropical cyclones and risk of landfall in the ECMWF forecast system. Geophys. Res. Lett., 36, L15802, doi:10.1029/2009GL039089.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 1889–1899, doi:10.1002/qj.2256.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, doi:10.1175/2008JCLI2731.1.

  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2009: A dynamically-based method for forecasting tropical cyclogenesis location in the Atlantic sector using global model products. Geophys. Res. Lett., 36, L03801, doi:10.1029/2008GL035586.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in the GFDL fully coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650661, doi:10.1175/JCLI-D-12-00231.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. Zhao, S. J. Lin, X. Yang, and W. Anderson, 2014: Retrieval of tropical cyclone statistics with a high-resolution coupled model and data. Geophys. Res. Lett., 41, 652660, doi:10.1002/2013GL058879.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2185 426 43
PDF Downloads 672 178 12