The Relative Roles of the Ocean and Atmosphere as Revealed by Buoy Air–Sea Observations in Hurricanes

Joseph J. Cione NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Joseph J. Cione in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Results from this multihurricane study suggest that the criticality of the oft-cited 26°C hurricane threshold linked to hurricane maintenance may be more closely associated with atmospheric thermodynamic conditions within the inner core than previously believed. In all cases, a positive sea–air contrast was observed within the storm inner core (i.e., surface ocean temperature greater than surface air temperature), despite the fact that 6% of the hurricanes exhibited sea surface temperatures (SSTs) less than the 26°C. For the storms sampled in this study, inner-core surface dewpoint temperatures never exceeded 26.5°C. This finding may provide an alternate explanation as to the criticality of the 26°C threshold since SSTs above 26°C would, in almost all instances, be associated with a positive enthalpy flux condition. Analyses from this study also illustrate that high wind SSTs fluctuate as a function of storm latitude, while inner-core near-surface dewpoint temperatures are much less sensitive to this parameter. As a result, and assuming all other factors to be equal, low-latitude hurricanes would, on average, be expected to experience surface moisture fluxes ~1/3 greater than storms located farther to the north. For systems sampled within the deep tropics, inner-core SST was found to fluctuate much less than surface dewpoint temperature, suggesting that the atmosphere, not the ocean, is more likely to influence the key thermodynamic parameter controlling surface moisture flux for this subset of hurricanes.

Corresponding author address: Joe Cione, NOAA/Hurricane Research Division, 4301 Rickenbacker Causeway, Miami, FL 33176. E-mail: joe.cione@noaa.gov

Abstract

Results from this multihurricane study suggest that the criticality of the oft-cited 26°C hurricane threshold linked to hurricane maintenance may be more closely associated with atmospheric thermodynamic conditions within the inner core than previously believed. In all cases, a positive sea–air contrast was observed within the storm inner core (i.e., surface ocean temperature greater than surface air temperature), despite the fact that 6% of the hurricanes exhibited sea surface temperatures (SSTs) less than the 26°C. For the storms sampled in this study, inner-core surface dewpoint temperatures never exceeded 26.5°C. This finding may provide an alternate explanation as to the criticality of the 26°C threshold since SSTs above 26°C would, in almost all instances, be associated with a positive enthalpy flux condition. Analyses from this study also illustrate that high wind SSTs fluctuate as a function of storm latitude, while inner-core near-surface dewpoint temperatures are much less sensitive to this parameter. As a result, and assuming all other factors to be equal, low-latitude hurricanes would, on average, be expected to experience surface moisture fluxes ~1/3 greater than storms located farther to the north. For systems sampled within the deep tropics, inner-core SST was found to fluctuate much less than surface dewpoint temperature, suggesting that the atmosphere, not the ocean, is more likely to influence the key thermodynamic parameter controlling surface moisture flux for this subset of hurricanes.

Corresponding author address: Joe Cione, NOAA/Hurricane Research Division, 4301 Rickenbacker Causeway, Miami, FL 33176. E-mail: joe.cione@noaa.gov
Save
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137, doi:10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., 1959: General Meteorology.McGraw Hill, 540 pp.

  • Chan, J. C. L., Y. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172, doi:10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, doi:10.1175/2562.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. Black, and S. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, doi:10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., E. A. Kalina, J. Zhang, and E. Uhlhorn, 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, doi:10.1175/MWR-D-12-00070.1.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. McBride, 2011: The threshold sea surface condition for tropical cyclogenesis. J. Climate, 24, 45704576, doi:10.1175/JCLI-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Dengler, K., 1997: A numerical study of the effects of land proximity and changes in sea surface temperature on hurricane tracks. Quart. J. Roy. Meteor. Soc., 123, 13071321, doi:10.1002/qj.49712354109.

    • Search Google Scholar
    • Export Citation
  • Gilhousen, D. B., 1988: Quality control of meteorological data from automated marine stations. Preprints, Fourth Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Miami, FL, Amer. Meteor. Soc., 113117.

  • Gilhousen, D. B., 1998: Improved real-time quality control of NDBC measurements. Preprints, 10th Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 363366.

  • Goni, G., and J. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Trans. Amer. Geophys. Union, 84, 573580, doi:10.1029/2003EO510001.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, X. H., S. Chang, S. Raman, L. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 13471365, doi:10.1175/1520-0493(2000)128<1347:TIBHOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscale features on the tropical cyclone–induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649676, doi:10.1175/1520-0485(2003)33<649:TROOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, and A. Mariano, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, doi:10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, doi:10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, doi:10.1175/MWR3005.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part I: Ocean features and category-5 typhoon’s intensification. Mon. Wea. Rev., 136, 32883306, doi:10.1175/2008MWR2277.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., M.-D. Chou, and C.-C. Wu, 2011: The impact of a warm ocean eddy on Typhoon Morakot (2009): A preliminary study from satellite observations and numerical modeling. Terr. Atmos. Oceanic Sci., 22, 661671, doi:10.3319/TAO.2011.08.19.01(TM).

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. Curry, C. Clayson, and M. Bourassa, 2011: High-resolution satellite surface latent heat fluxes in North Atlantic hurricanes. Mon. Wea. Rev., 139, 27352747, doi:10.1175/2011MWR3548.1.

    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., and G. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, doi:10.1175/2010JCLI3763.1.

    • Search Google Scholar
    • Export Citation
  • Mainelli, M., M. DeMaria, L. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23, 316, doi:10.1175/2007WAF2006111.1.

    • Search Google Scholar
    • Export Citation
  • Mao, Q., S. W. Chang, and R. L. Pfeffer, 2000: Influence of large-scale initial oceanic mixed layer depth on tropical cyclones. Mon. Wea. Rev., 128, 40584070, doi:10.1175/1520-0493(2000)129<4058:IOLSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteor., 15, 184195, doi:10.1175/1520-0469(1958)015<0184:OTMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmen, E., 1948: On the formation and structure of tropical cyclones. Geophysica, 3, 184195.

  • Perlboth, I., 1967: Hurricane behavior as related to oceanographic environmental conditions. Tellus, 19A, 258268, doi:10.1111/j.2153-3490.1967.tb01481.x.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, doi:10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 2009: Metrics of hurricane-ocean interaction: Vertically integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368, doi:10.5194/os-5-351-2009.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1959: Hurricane development. J. Meteor., 16, 227237, doi:10.1175/1520-0469(1959)016<0227:HD>2.0.CO;2.

  • Rodgers, E., W. Olson, J. Halverson, J. Simpson, and H. Pierce, 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39, 19832006, doi:10.1175/1520-0450(2001)040<1983:EFOSPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., J. Goni, and P. G. Black, 2000: Role of a warm core ocean feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2013: Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 9971021, doi:10.1175/MWR-D-12-00248.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 513 254 4
PDF Downloads 287 71 3