Climatology and Environmental Characteristics of Extreme Precipitation Events in the Southeastern United States

Benjamin J. Moore Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Benjamin J. Moore in
Current site
Google Scholar
PubMed
Close
,
Kelly M. Mahoney Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Kelly M. Mahoney in
Current site
Google Scholar
PubMed
Close
,
Ellen M. Sukovich Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Ellen M. Sukovich in
Current site
Google Scholar
PubMed
Close
,
Robert Cifelli Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Robert Cifelli in
Current site
Google Scholar
PubMed
Close
, and
Thomas M. Hamill Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Thomas M. Hamill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper documents the characteristics of extreme precipitation events (EPEs) in the southeastern United States (SEUS) during 2002–11. The EPEs are identified by applying an object-based method to 24-h precipitation analyses from the NCEP stage-IV dataset. It is found that EPEs affected the SEUS in all months and occurred most frequently in the western portion of the SEUS during the cool season and in the eastern portion during the warm season. The EPEs associated with tropical cyclones, although less common, tended to be larger in size, more intense, and longer lived than “nontropical” EPEs. Nontropical EPEs in the warm season, relative to those in the cool season, tended to be smaller in size and typically involved more moist, conditionally unstable conditions but weaker dynamical influences. Synoptic-scale composites are constructed for nontropical EPEs stratified by the magnitude of vertically integrated water vapor transport (IVT) to examine distinct scenarios for the occurrence of EPEs. The composite results indicate that “strong IVT” EPEs occur within high-amplitude flow patterns involving strong transport of moist, conditionally unstable air within the warm sector of a cyclone, whereas “weak IVT” EPEs occur within low-amplitude flow patterns featuring weak transport but very moist and conditionally unstable conditions. Finally, verification of deterministic precipitation forecasts from a reforecast dataset based on the NCEP Global Ensemble Forecast System reveals that weak-IVT EPEs were characteristically associated with lower forecast skill than strong-IVT EPEs. Based on these results, it is suggested that further research should be conducted to investigate the forecast challenges associated with EPEs in the SEUS.

Current affiliation: Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York.

Corresponding author address: Benjamin J. Moore, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12208. E-mail: bjmoore@albany.edu

Abstract

This paper documents the characteristics of extreme precipitation events (EPEs) in the southeastern United States (SEUS) during 2002–11. The EPEs are identified by applying an object-based method to 24-h precipitation analyses from the NCEP stage-IV dataset. It is found that EPEs affected the SEUS in all months and occurred most frequently in the western portion of the SEUS during the cool season and in the eastern portion during the warm season. The EPEs associated with tropical cyclones, although less common, tended to be larger in size, more intense, and longer lived than “nontropical” EPEs. Nontropical EPEs in the warm season, relative to those in the cool season, tended to be smaller in size and typically involved more moist, conditionally unstable conditions but weaker dynamical influences. Synoptic-scale composites are constructed for nontropical EPEs stratified by the magnitude of vertically integrated water vapor transport (IVT) to examine distinct scenarios for the occurrence of EPEs. The composite results indicate that “strong IVT” EPEs occur within high-amplitude flow patterns involving strong transport of moist, conditionally unstable air within the warm sector of a cyclone, whereas “weak IVT” EPEs occur within low-amplitude flow patterns featuring weak transport but very moist and conditionally unstable conditions. Finally, verification of deterministic precipitation forecasts from a reforecast dataset based on the NCEP Global Ensemble Forecast System reveals that weak-IVT EPEs were characteristically associated with lower forecast skill than strong-IVT EPEs. Based on these results, it is suggested that further research should be conducted to investigate the forecast challenges associated with EPEs in the SEUS.

Current affiliation: Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York.

Corresponding author address: Benjamin J. Moore, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12208. E-mail: bjmoore@albany.edu
Save
  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, doi:10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bailey, C. M., G. Hartfield, G. M. Lackmann, K. Keeter, and S. Sharp, 2003: An objective climatology, classification scheme, and assessment of sensible weather impacts for Appalachian cold-air damming. Wea. Forecasting, 18, 641661, doi:10.1175/1520-0434(2003)018<0641:AOCCSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161, doi:10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., and Coauthors, 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 11091173, doi:10.1175/2007MWR2074.1.

  • Blanchard, D. O., W. R. Cotton, and J. M. Brown, 1998: Mesoscale circulation growth under conditions of weak inertial instability. Mon. Wea. Rev., 126, 118140, doi:10.1175/1520-0493(1998)126<0118:MCGUCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and D. J. Stensrud, 2000: Climatology of heavy rain events in the United States from hourly precipitation observations. Mon. Wea. Rev., 128, 11941201, doi:10.1175/1520-0493(2000)128<1194:COHREI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmen Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–154.

  • Businger, S., D. I. Knapp, and G. F. Watson, 1990: Storm following climatology of precipitation associated with winter cyclones originating over the Gulf of Mexico. Wea. Forecasting, 5, 378403, doi:10.1175/1520-0434(1990)005<0378:SFCOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, doi:10.1175/2008JCLI2275.1.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from rapid update cycle analyses. Mon. Wea. Rev., 138, 35143539, doi:10.1175/2010MWR3233.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci., 36, 24252449, doi:10.1175/1520-0469(1979)036<2425:IIAMCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, doi:10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., R. J. Pasch, L. A. Avila, J. L. Beven II, M. B. Lawrence, S. R. Stewart, and E. S. Blake, 2006: Atlantic hurricane season of 2004. Mon. Wea. Rev., 134, 9811025, doi:10.1175/MWR3096.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season. Bull. Amer. Meteor. Soc., 85, 955965, doi:10.1175/BAMS-85-7-955.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, doi:10.1175/2010MWR3243.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2012: Verification of TIGGE multimodel and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the contiguous United States. Mon. Wea. Rev., 140, 22322252, doi:10.1175/MWR-D-11-00220.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Henderson, K. G., and A. J. Vega, 1996: Regional precipitation variability in the southern United States. Phys. Geogr., 17, 93112, doi:10.1080/02723646.1996.10642576.

    • Search Google Scholar
    • Export Citation
  • Hershfield, D. M., 1961: Rainfall frequency atlas of the United States. U.S. Department of Commerce, Weather Bureau Tech. Paper 40, 115 pp.

  • Higgins, R. W., J. E. Janowiak, and Y.-P. Yao, 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas 1, U.S. Department of Commerce, NOAA/NSW, 47 pp.

  • Hitchens, N. M., M. E. Baldwin, and R. J. Trapp, 2012: An object-oriented characterization of extreme precipitation-producing convective systems in the midwestern United States. Mon. Wea. Rev., 140, 13561366, doi:10.1175/MWR-D-11-00153.1.

    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., H. E. Brooks, and R. S. Schumacher, 2013: Spatial and temporal characteristics of heavy hourly rainfall in the United States. Mon. Wea. Rev., 141, 45644575, doi:10.1175/MWR-D-12-00297.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., D. Lüthi, and C. Schär, 2006: Predictability mysteries in cloud-resolving models. Mon. Wea. Rev., 134, 20952107, doi:10.1175/MWR3176.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, doi:10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, doi:10.1175/JHM-D-11-0140.1.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., and W. A. Gallus Jr., 2004: MCS rainfall forecast accuracy as a function of large-scale forcing. Wea. Forecasting, 19, 428439, doi:10.1175/1520-0434(2004)019<0428:MRFAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, doi:10.1175/2009JCLI3303.1.

    • Search Google Scholar
    • Export Citation
  • Keil, C., F. Heinlein, and G. C. Craig, 2014: The convective adjustment time-scale as indicator of predictability of convective precipitation. Quart. J. Roy. Meteor. Soc., 140, 480–490, doi:10.1002/qj.2143.

    • Search Google Scholar
    • Export Citation
  • Keim, B. D., 1996: Spatial, synoptic, and seasonal patterns of heavy rainfall in the southeastern United States. Phys. Geogr., 17, 313328, doi:10.1080/02723646.1996.10642588.

    • Search Google Scholar
    • Export Citation
  • Knight, D. B., and R. E. Davis, 2007: Climatology of tropical cyclone rainfall in the southeastern United States. Phys. Geogr., 28, 126147, doi:10.2747/0272-3646.28.2.126.

    • Search Google Scholar
    • Export Citation
  • Knight, D. B., and R. E. Davis, 2009: Contribution of tropical cyclones to extreme rainfall events in the southeastern United States. J. Geophys. Res., 114, D23102, doi:10.1029/2009JD012511.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and C. A. Ray, 1997: Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12, 5677, doi:10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 1997: Synoptic-scale features associated with warm season heavy rainfall over the interior southeastern United States. Wea. Forecasting, 12, 557571, doi:10.1175/1520-0434(1997)012<0557:SSFAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2, 309325, doi:10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, and L. B. Perry, 2010: Relationships between tropical cyclones and heavy rainfall in the Carolina region of the USA. Int. J. Climatol., 30, 522534, doi:10.1002/joc.1894.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, doi:10.1175/JHM-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974, doi:10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, doi:10.1175/JCLI-D-13-00212.1.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and A. P. Barros, 2013: Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Climate Dyn., 41, 613–631, doi:10.1007/s00382-013-1697-9.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506, doi:10.1175/2010JCLI3829.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., and G. M. Lackmann, 2007: The effects of upstream convection on downstream precipitation. Wea. Forecasting, 22, 255277, doi:10.1175/WAF986.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., L. F. Bosart, D. Keyser, and M. L. Jurewicz, 2013: Synoptic-scale environments of predecessor rain events occurring east of the Rocky Mountains in association with Atlantic basin tropical cyclones. Mon. Wea. Rev., 141, 10221047, doi:10.1175/MWR-D-12-00178.1.

    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and R. Buizza, 2001: Quantitative precipitation forecasts over the United States by the ECMWF ensemble prediction system. Mon. Wea. Rev., 129, 638663, doi:10.1175/1520-0493(2001)129<0638:QPFOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Narapusetty, B., T. DelSole, and M. K. Tippett, 2009: Optimal estimation of the climatological mean. J. Climate, 22, 48454859, doi:10.1175/2009JCLI2944.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, doi:10.1175/2008MWR2550.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, doi:10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and D. A. Ahijevych, 2007: Convective episodes in the east-central United States. Mon. Wea. Rev., 135, 37073727, doi:10.1175/2007MWR2098.1.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, doi:10.1175/JCLI-D-11-00705.1.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, doi:10.1175/JCLI-D-13-00223.1.

    • Search Google Scholar
    • Export Citation
  • Pontrelli, M. D., G. Bryan, and J. M. Fritsch, 1999: The Madison County, Virginia, flash flood of 27 June 1995. Wea. Forecasting, 14, 384404, doi:10.1175/1520-0434(1999)014<0384:TMCVFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data. J. Climate, 26, 10471062, doi:10.1175/JCLI-D-11-00736.1.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2014: Characteristics of annual, seasonal, and diurnal precipitation in the southeastern United States derived from long-term remotely sensed data. Atmos. Res., 144, 4–20, doi:10.1016/j.atmosres.2013.07.022.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, doi:10.1175/BAMS-D-11-00188.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., E. Sukovich, D. Reynolds, M. Dettinger, S. Weagle, W. Clark, and P. J. Neiman, 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12861304, doi:10.1175/2010JHM1232.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, doi:10.1175/WAF900.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and C. A. Davis, 2010: Ensemble-based forecast uncertainty analysis of diverse heavy rainfall events. Wea. Forecasting, 25, 11031122, doi:10.1175/2010WAF2222378.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., A. Grundstein, and T. L. Mote, 2007: Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett., 34, L23810, doi:10.1029/2007GL031694.

    • Search Google Scholar
    • Export Citation
  • Srock, A. F., and L. F. Bosart, 2009: Heavy precipitation associated with southern Appalachian cold-air damming and Carolina coastal frontogenesis in advance of weak landfalling Tropical Storm Marco (1990). Mon. Wea. Rev., 137, 24482470, doi:10.1175/2009MWR2819.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. M. Fritsch, 1994: Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for operational forecasting. Mon. Wea. Rev., 122, 20842104, doi:10.1175/1520-0493(1994)122<2084:MCSIWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., F. M. Ralph, F. E. Barthold, D. W. Reynolds, and D. R. Novak, 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, doi:10.1175/WAF-D-13-00061.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, doi:10.1029/2009WR008395.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., R. Goska, J. A. Smith, and G. A. Vecchi, 2014: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 1381–1388, doi:10.1175/BAMS-D-13-00060.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, doi:10.1002/qj.49712353811.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • Winkler, J. A., B. R. Skeeter, and P. D. Yamamoto, 1988: Seasonal variations in the diurnal characteristics of heavy hourly precipitation across the United States. Mon. Wea. Rev., 116, 16411657, doi:10.1175/1520-0493(1988)116<1641:SVITDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., A. M. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21, 149166, doi:10.1175/WAF909.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 848 255 17
PDF Downloads 844 177 14