Horizontally Explicit and Vertically Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin Nonhydrostatic Model

Lei Bao Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Lei Bao in
Current site
Google Scholar
PubMed
Close
,
Robert Klöfkorn National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Robert Klöfkorn in
Current site
Google Scholar
PubMed
Close
, and
Ramachandran D. Nair National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Ramachandran D. Nair in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A two-dimensional nonhydrostatic (NH) atmospheric model based on the compressible Euler system has been developed in the (x, z) Cartesian domain. The spatial discretization is based on a nodal discontinuous Galerkin (DG) method with exact integration. The orography is handled by the terrain-following height-based coordinate system. The time integration uses the horizontally explicit and vertically implicit (HEVI) time-splitting scheme, which is introduced to address the stringent restriction on the explicit time step size due to a high aspect ratio between the horizontal (x) and vertical (z) spatial discretization. The HEVI scheme is generally based on the Strang-type operator-split approach, where the horizontally propagating waves in the Euler system are solved explicitly while the vertically propagating waves are treated implicitly. As a consequence, the HEVI scheme relaxes the maximum allowed time step to be mainly determined by the horizontal grid spacing. The accuracy of the HEVI scheme is rigorously compared against that of the explicit strong stability-preserving (SSP) Runge–Kutta (RK) scheme using several NH benchmark test cases. The HEVI scheme shows a second-order temporal convergence, as expected. The results of the HEVI scheme are qualitatively comparable to those of the SSP-RK3 scheme. Moreover, the HEVI DG formulation can also be seamlessly extended to account for the second-order diffusion as in the case of the standard SSP-RK DG formulation. In the presence of orography, the HEVI scheme produces high quality results, which are visually identical to those produced by the SSP-RK3 scheme.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: R. D. Nair, Computational and Information System Laboratory, National Center for Atmospheric Research, Boulder, CO 80305. E-mail: rnair@ucar.edu

Abstract

A two-dimensional nonhydrostatic (NH) atmospheric model based on the compressible Euler system has been developed in the (x, z) Cartesian domain. The spatial discretization is based on a nodal discontinuous Galerkin (DG) method with exact integration. The orography is handled by the terrain-following height-based coordinate system. The time integration uses the horizontally explicit and vertically implicit (HEVI) time-splitting scheme, which is introduced to address the stringent restriction on the explicit time step size due to a high aspect ratio between the horizontal (x) and vertical (z) spatial discretization. The HEVI scheme is generally based on the Strang-type operator-split approach, where the horizontally propagating waves in the Euler system are solved explicitly while the vertically propagating waves are treated implicitly. As a consequence, the HEVI scheme relaxes the maximum allowed time step to be mainly determined by the horizontal grid spacing. The accuracy of the HEVI scheme is rigorously compared against that of the explicit strong stability-preserving (SSP) Runge–Kutta (RK) scheme using several NH benchmark test cases. The HEVI scheme shows a second-order temporal convergence, as expected. The results of the HEVI scheme are qualitatively comparable to those of the SSP-RK3 scheme. Moreover, the HEVI DG formulation can also be seamlessly extended to account for the second-order diffusion as in the case of the standard SSP-RK DG formulation. In the presence of orography, the HEVI scheme produces high quality results, which are visually identical to those produced by the SSP-RK3 scheme.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: R. D. Nair, Computational and Information System Laboratory, National Center for Atmospheric Research, Boulder, CO 80305. E-mail: rnair@ucar.edu
Save
  • Ahmad, N., and J. Linedman, 2007: Euler solutions using flux-based wave decomposition. Int. J. Numer. Methods Fluids, 54, 4772, doi:10.1002/fld.1392.

    • Search Google Scholar
    • Export Citation
  • Alexander, R., 1977: Diagonally implicit Runge–Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal., 14, 10061021, doi:10.1137/0714068.

    • Search Google Scholar
    • Export Citation
  • Ascher, U. M., S. J. Ruuth, and R. J. Spiteri, 1997: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math., 25, 151167, doi:10.1016/S0168-9274(97)00056-1.

    • Search Google Scholar
    • Export Citation
  • Bao, L., R. D. Nair, and H. M. Tufo, 2014: A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere. J. Comput. Phys., 271, 224243, doi:10.1016/j.jcp.2013.11.033.

    • Search Google Scholar
    • Export Citation
  • Brdar, S., M. Baldauf, A. Dedner, and R. Klöfkorn, 2013: Comparison of dynamical cores for NWP models: Comparison of COSMO and Dune. Theor. Comput. Fluid Dyn., 27, 453472, doi:10.1007/s00162-012-0264-z.

    • Search Google Scholar
    • Export Citation
  • Butcher, J. C., 1987: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. John Wiley & Sons Inc., 528 pp.

  • Clark, T. L., 1977: A small-scale dynamics model using a terrain-following coordinate transformation. J. Comput. Phys., 24, 186215, doi:10.1016/0021-9991(77)90057-2.

    • Search Google Scholar
    • Export Citation
  • Cockburn, B., 1997: An introduction to the discontinuous-Galerkin method for convection-dominated problems. Lecture Notes in Mathematics: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, A. Quarteroni, Ed., Vol. 1697, Springer, 151–268.

  • Cockburn, B., and C.-W. Shu, 1998: The local discontinuous Galerkin for convection diffusion systems. SIAM J. Numer. Anal., 35, 24402463, doi:10.1137/S0036142997316712.

    • Search Google Scholar
    • Export Citation
  • Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, 465 pp.

  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, doi:10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. Sommerville, 1975: On the use of a coordinate transformation for the solution of Navier–Stokes. J. Comput. Phys., 17, 209228, doi:10.1016/0021-9991(75)90037-6.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., and M. Restelli, 2008: A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys., 227, 38493877, doi:10.1016/j.jcp.2007.12.009.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., J. F. Kelly, and E. M. Constantinescu, 2013: Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput., 35, B1162B1194, doi:10.1137/120876034.

    • Search Google Scholar
    • Export Citation
  • Gottlieb, S., C.-W. Shu, and E. Tadmor, 2001: Strong stability-preserving high-order time discretization methods. SIAM Rev., 43, 89112, doi:10.1137/S003614450036757X.

    • Search Google Scholar
    • Export Citation
  • Guo, W., R. D. Nair, and J.-M. Qiu, 2014: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed sphere. Mon. Wea. Rev., 142, 457475, doi:10.1175/MWR-D-13-00048.1.

    • Search Google Scholar
    • Export Citation
  • Karniadakis, G. E., and S. Sherwin, 2005: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, 657 pp.

  • Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 21632169, doi:10.1175/MWR-D-10-05046.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131, 12291239, doi:10.1175/1520-0493(2003)131<1229:NCOMTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knoll, D. A., and D. E. Keyes, 2004: Jacobian-free Newton–Krylov methods: A survey of approaches and applications. J. Comput. Phys., 193, 357397, doi:10.1016/j.jcp.2003.08.010.

    • Search Google Scholar
    • Export Citation
  • Li, X., C. Chen, X. Shen, and F. Xiao, 2013: A multimoment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Wea. Rev., 141, 12161240, doi:10.1175/MWR-D-12-00144.1.

    • Search Google Scholar
    • Export Citation
  • Liska, R., and B. Wendroff, 2003: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput., 25, 9951017, doi:10.1137/S1064827502402120.

    • Search Google Scholar
    • Export Citation
  • Lock, S. J., N. Wood, and H. Weller, 2014: Numerical analyses of Runge–Kutta implicit-explicit schemes for horizontally explicit, vertically implicit solutions of atmospheric models. Quart. J. Roy. Meteor. Soc .,140, 1654–1669, doi:10.1002/qj.2246.

    • Search Google Scholar
    • Export Citation
  • Melvin, T., M. Dubal, N. Wood, A. Staniforth, and M. Zerroukat, 2010: An inherently mass-conserving iterative semi-implicit semi-Lagrangian discretization of the non-hydrostatic vertical-slice equations. Quart. J. Roy. Meteor. Soc., 136, 799814, doi:10.1002/qj.603.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., and Coauthors, 2007: WRF nature run. Proc. 2007 ACM/IEEE Conf. on Supercomputing, 2007 (SC' 07), Reno, NV, ACM; IEEE, 1–6, doi:10.1145/1362622.1362701.

  • Nair, R. D., 2009: Diffusion experiments with a global discontinuous Galerkin shallow-water model. Mon. Wea. Rev., 137, 33393350, doi:10.1175/2009MWR2843.1.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., H.-W. Choi, and H. M. Tufo, 2009: Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Comput. Fluids, 38, 309319, doi:10.1016/j.compfluid.2008.04.006.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., M. N. Levy, and P. H. Lauritzen, 2011: Emerging numerical methods for atmospheric modeling. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Vol. 80, Springer-Verlag, 189–250.

  • Norman, M. R., R. D. Nair, and F. H. M. Semazzi, 2011: A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics. J. Comput. Phys., 230, 15671584, doi:10.1016/j.jcp.2010.11.022.

    • Search Google Scholar
    • Export Citation
  • Prusa, J., P. Smolarkiewicz, and A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Comput. Fluids, 37, 11931207, doi:10.1016/j.compfluid.2007.12.001.

    • Search Google Scholar
    • Export Citation
  • Restelli, M., and F. Giraldo, 2009: A conservative discontinuous Galerkin semi-implicit formulation for the Navier–Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput., 31, 22312257, doi:10.1137/070708470.

    • Search Google Scholar
    • Export Citation
  • Saad, Y., and M. H. Schultz, 1986: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856869, doi:10.1137/0907058.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 2002: Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130, 12271245, doi:10.1175/1520-0493(2002)130<1227:CSFTCN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Leuenberger, O. Fuhrer, D. Luthic, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 24592480, doi:10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simarro, J., V. Homar, and G. Simarro, 2013: A non-hydrostatic global spectral dynamical core using a height-based vertical coordinate. Tellus, 65A, 20270, doi:10.3402/tellusa.v65i0.20270.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and J. Klemp, 1994: Efficiency and accuracy of the Klemp–Wilhelmson time-splitting technique. Mon. Wea. Rev., 122, 26232630, doi:10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and J. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., J. Klemp, M. G. Duda, L. D. Flower, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • St-Cyr, A., and D. Neckels, 2009: A fully implicit Jacobian-free high-order discontinuous Galerkin mesoscale flow solver. Lecture Notes in Computer Science, G. Allen et al., Eds., Vol. 5545, Springer-Verlag, 243252, doi:10.1007/978-3-642-01973-9_28.

  • Straka, J., R. Wilhelmson, L. Wicker, J. Anderson, and K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 122, doi:10.1002/fld.1650170103.

    • Search Google Scholar
    • Export Citation
  • Strang, G., 1968: On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5, 506517, doi:10.1137/0705041.

  • Tomita, H., K. Goto, and M. Satoh, 2008: A new approach to atmospheric general circulation model: Global cloud resolving model NICAM and its computational performance. SIAM J. Sci. Comput., 30, 27552776, doi:10.1137/070692273.

    • Search Google Scholar
    • Export Citation
  • Toro, E. F., 1999: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 2nd ed. Springer-Verlag, 724 pp.

  • Toy, M. D., and D. A. Randall, 2009: Design of a nonhydrostatic atmospheric model based on a generalized vertical coordinate. Mon. Wea. Rev., 137, 23052330, doi:10.1175/2009MWR2834.1.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P., and C. Jablonowski, 2012: Operator-split Runge–Kutta–Rosenbrock methods for nonhydrostatic atmospheric models. Mon. Wea. Rev., 140, 12571284, doi:10.1175/MWR-D-10-05073.1.

    • Search Google Scholar
    • Export Citation
  • Weller, H., S.-J. Lock, and N. Wood, 2013: Runge–Kutta IMEX schemes for the Horizontally Explicit/Vertically Implicit (HEVI) solution of wave equations. J. Comput. Phys., 252, 365381, doi:10.1016/j.jcp.2013.06.025.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and R. D. Nair, 2012: A nonoscillatory discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 140, 31063126, doi:10.1175/MWR-D-11-00287.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 601 153 13
PDF Downloads 451 114 13