Probabilistic Multiple Linear Regression Modeling for Tropical Cyclone Intensity

Chia-Ying Lee International Research Institute of Climate and Society, Columbia University, Palisades, New York

Search for other papers by Chia-Ying Lee in
Current site
Google Scholar
PubMed
Close
,
Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
,
Suzana J. Camargo Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
, and
Adam H. Sobel Department of Applied Physics and Applied Mathematics, Columbia University, New York, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Adam H. Sobel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors describe the development and verification of a statistical model relating tropical cyclone (TC) intensity to the local large-scale environment. A multiple linear regression framework is used to estimate the expected intensity of a tropical cyclone given the environmental and storm conditions. The uncertainty of the estimate is constructed from the empirical distribution of model errors. NCEP–NCAR reanalysis fields and historical hurricane data from 1981 to 1999 are used for model development, and data from 2000 to 2012 are used to evaluate model performance. Seven predictors are selected: initial storm intensity, the change of storm intensity over the past 12 h, the storm translation speed, the difference between initial storm intensity and its corresponding potential intensity, deep-layer (850–200 hPa) vertical shear, atmospheric stability, and 200-hPa divergence. The system developed here models storm intensity changes in response to changes in the surrounding environment with skill comparable to existing operational forecast tools. Since one application of such a model is to predict changes in TC activity in response to natural or anthropogenic climate change, the authors examine the performance of the model using data that is most readily available from global climate models, that is, monthly averages. It is found that statistical models based on monthly data (as opposed to daily) with only a few essential predictors, for example, the difference between storm intensity and potential intensity, perform nearly as well at short leads as when daily predictors are used.

Corresponding author address: Chia-Ying Lee, International Research Institute for Climate and Society, Columbia University, 61 Route 9W, 202 Monell, Palisades, NY 10964. E-mail: clee@iri.columbia.edu

Abstract

The authors describe the development and verification of a statistical model relating tropical cyclone (TC) intensity to the local large-scale environment. A multiple linear regression framework is used to estimate the expected intensity of a tropical cyclone given the environmental and storm conditions. The uncertainty of the estimate is constructed from the empirical distribution of model errors. NCEP–NCAR reanalysis fields and historical hurricane data from 1981 to 1999 are used for model development, and data from 2000 to 2012 are used to evaluate model performance. Seven predictors are selected: initial storm intensity, the change of storm intensity over the past 12 h, the storm translation speed, the difference between initial storm intensity and its corresponding potential intensity, deep-layer (850–200 hPa) vertical shear, atmospheric stability, and 200-hPa divergence. The system developed here models storm intensity changes in response to changes in the surrounding environment with skill comparable to existing operational forecast tools. Since one application of such a model is to predict changes in TC activity in response to natural or anthropogenic climate change, the authors examine the performance of the model using data that is most readily available from global climate models, that is, monthly averages. It is found that statistical models based on monthly data (as opposed to daily) with only a few essential predictors, for example, the difference between storm intensity and potential intensity, perform nearly as well at short leads as when daily predictors are used.

Corresponding author address: Chia-Ying Lee, International Research Institute for Climate and Society, Columbia University, 61 Route 9W, 202 Monell, Palisades, NY 10964. E-mail: clee@iri.columbia.edu
Save
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/pdfpapers/70720.pdf.]

  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bhatia, K. T., and D. S. Nolan, 2013: Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961980, doi:10.1175/WAF-D-12-00110.1.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, doi:10.1175/JAS-D-10-05007.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, doi:10.1175/2009JAS3038.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, doi:10.1175/2009JAS3101.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, doi:10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., F. Judt, J. Berner, C.-Y. Lee, M. Curcic, C. Snyder, and R. Rotunno, 2014: Distinct characteristics of hurricane ensemble forecasts using physical parameterizations vs. stochastic perturbations. 26th Conf. on Weather Analysis and Forecasting/22nd Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., J4.6. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper239878.html.]

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882, doi:10.1175/2008MWR2513.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2010: Tropical cyclone intensity change predictability estimates using a statistical-dynamical model. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 9C.5. [Available online at https://ams.confex.com/ams/pdfpapers/167916.pdf.]

  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific basins. Wea. Forecasting, 14, 326337, doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and C. Sampson, 2007: Evaluation of long-term trends in tropical cyclone intensity forecasts. Meteor. Atmos. Phys., 97, 1928, doi:10.1007/s00703-006-0241-4.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, R. Knabb, C. Lauer, C. R. Sampson, and R. T. DeMaria, 2009: A new method for estimating tropical cyclone wind speed probabilities. Wea. Forecasting, 24, 15731591, doi:10.1175/2009WAF2222286.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Coauthors, 2013: Improvements to the operational tropical cyclone wind speed probability model. Wea. Forecasting, 28, 586602, doi:10.1175/WAF-D-12-00116.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, doi:10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, doi:10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Natural, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, doi:10.1175/JCLI3908.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA,110, 12 219–12 224, doi:10.1073/pnas.1301293110.

  • Emanuel, K. A., and A. H. Sobel, 2013: Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J. Adv. Model. Earth Syst., 5, 447458, doi:10.1002/jame.20032.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Search Google Scholar
    • Export Citation
  • Ge, X., and T. Li, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, doi:10.1175/JAS-D-13-066.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886-1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, 21 pp.

  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, C. R. Sampson, and J. M. Gross, 2003: Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 8092, doi:10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using a 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, doi:10.1175/BAMS-88-10-1549.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming condition. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecast from multimodel superensemble. Science, 285, 15481550, doi:10.1126/science.285.5433.1548.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lin, N., K. A. Emanuel, J. A. Smith, and E. Vanmarcke, 2010: Risk assessment of hurricane storm surge for New York City. J. Geophys. Res.,115, D18121, doi:10.1029/2009JD013630.

  • Price, J. F., 2009: Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368, doi:10.5194/os-5-351-2009.

    • Search Google Scholar
    • Export Citation
  • Puri, K., J. Barkmeijer, and T. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127, 709731, doi:10.1002/qj.49712757222.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183–193, doi:10.1175/2010JCLI3690.1.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, doi:10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., and R. E. Hart, 2012: An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533474, doi:10.1175/2011JCLI4208.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, A., M. DeMaria, and J. Knaff, 2013: Summary of the new statistical-dynamical intensity forecast models for the Indian Ocean and Southern Hemisphere and resulting performance. Joint Typhoon Warning Center Final Tech. Rep., 11 pp.

  • Smith, R. K., M. T. Montgomery, and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Quart. J. Roy. Meteor. Soc., 134, 551561, doi:10.1002/qj.241.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. A. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, doi:10.1002/2014MS000314.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Possion regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of monthly U.S. tornado occurrence with large-scale atmospheric parameters. Geophys. Res. Lett.,39, L02801, doi:10.1029/2011GL050368.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Natural, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., M. Zhao, G. Villarini, R. Anthony, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, doi:10.1175/2010MWR3499.1.

    • Search Google Scholar
    • Export Citation
  • Weber, H. C., 2005: Probabilistic prediction of tropical cyclones. Part II: Intensity. Mon. Wea. Rev., 133, 18531864, doi:10.1175/MWR2950.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, doi:10.1175/MWR3402.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and T. N. Krishnamurti, 1999: A perturbation method for hurricane ensemble predictions. Mon. Wea. Rev., 127, 447469, doi:10.1175/1520-0493(1999)127<0447:APMFHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 29, Amer. Meteor. Soc., 49–57.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1089 330 28
PDF Downloads 862 237 18