Impact of Storm-Scale Lightning Data Assimilation on WRF-ARW Precipitation Forecasts during the 2013 Warm Season over the Contiguous United States

Alexandre O. Fierro Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexandre O. Fierro in
Current site
Google Scholar
PubMed
Close
,
Adam J. Clark Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Adam J. Clark in
Current site
Google Scholar
PubMed
Close
,
Edward R. Mansell NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
,
Donald R. MacGorman NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Donald R. MacGorman in
Current site
Google Scholar
PubMed
Close
,
Scott R. Dembek Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Scott R. Dembek in
Current site
Google Scholar
PubMed
Close
, and
Conrad L. Ziegler NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Conrad L. Ziegler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work evaluates the performance of a recently developed cloud-scale lightning data assimilation technique implemented within the Weather Research and Forecasting Model running at convection-allowing scales (4-km grid spacing). Data provided by the Earth Networks Total Lightning Network for the contiguous United States (CONUS) were assimilated in real time over 67 days spanning the 2013 warm season (May–July). The lightning data were assimilated during the first 2 h of simulations each day. Bias-corrected, neighborhood-based, equitable threat scores (BC-ETSs) were the chief metric used to quantify the skill of the forecasts utilizing this assimilation scheme. Owing to inferior observational data quality over mountainous terrain, this evaluation focused on the eastern two-thirds of the United States.

During the first 3 h following the assimilation (i.e., 3-h forecasts), all the simulations suffered from a high wet bias in forecasted accumulated precipitation (APCP), particularly for the lightning assimilation run (LIGHT). Forecasts produced by LIGHT, however, had a noticeable, statistically significant (α = 0.05) improvement over those by the control run (CTRL) up to 6 h into the forecast with BC-ETS differences often exceeding 0.4. This improvement was seen independently of the APCP threshold (ranging from 2.5 to 50 mm) and the neighborhood radius (ranging from 0 to 40 km) selected. Past 6 h of the forecast, the APCP fields from LIGHT progressively converged to that of CTRL probably due to the longer-term evolution being bounded by the large-scale model environment. Thus, this computationally inexpensive lightning assimilation scheme shows considerable promise for routinely improving short-term (≤6 h) forecasts of high-impact weather by convection-allowing forecast models.

Corresponding author address: Alexandre O. Fierro, CIMMS, National Weather Center, Suite 2100, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: alex.fierro@noaa.gov

Abstract

This work evaluates the performance of a recently developed cloud-scale lightning data assimilation technique implemented within the Weather Research and Forecasting Model running at convection-allowing scales (4-km grid spacing). Data provided by the Earth Networks Total Lightning Network for the contiguous United States (CONUS) were assimilated in real time over 67 days spanning the 2013 warm season (May–July). The lightning data were assimilated during the first 2 h of simulations each day. Bias-corrected, neighborhood-based, equitable threat scores (BC-ETSs) were the chief metric used to quantify the skill of the forecasts utilizing this assimilation scheme. Owing to inferior observational data quality over mountainous terrain, this evaluation focused on the eastern two-thirds of the United States.

During the first 3 h following the assimilation (i.e., 3-h forecasts), all the simulations suffered from a high wet bias in forecasted accumulated precipitation (APCP), particularly for the lightning assimilation run (LIGHT). Forecasts produced by LIGHT, however, had a noticeable, statistically significant (α = 0.05) improvement over those by the control run (CTRL) up to 6 h into the forecast with BC-ETS differences often exceeding 0.4. This improvement was seen independently of the APCP threshold (ranging from 2.5 to 50 mm) and the neighborhood radius (ranging from 0 to 40 km) selected. Past 6 h of the forecast, the APCP fields from LIGHT progressively converged to that of CTRL probably due to the longer-term evolution being bounded by the large-scale model environment. Thus, this computationally inexpensive lightning assimilation scheme shows considerable promise for routinely improving short-term (≤6 h) forecasts of high-impact weather by convection-allowing forecast models.

Corresponding author address: Alexandre O. Fierro, CIMMS, National Weather Center, Suite 2100, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: alex.fierro@noaa.gov
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, doi:10.1175/2008MWR2691.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, G. D., J. A. Weinman, V. Karyampudi, W. S. Olson, and A. C. L. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 Superstorm. Mon. Wea. Rev., 127, 14331457, doi:10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and K. E. Mitchell, 1997: The NCEP hourly multisensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

  • Baldwin, M. E., and J. S. Kain, 2006: Sensitivity of several performance measures to displacement error, bias, and event frequency. Wea. Forecasting, 21, 636648, doi:10.1175/WAF933.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, D. R. MacGorman, M. I. Biggerstaff, and T. J. Schuur, 2010: Formation of charge structures in a supercell. Mon. Wea. Rev., 138, 37403761, doi:10.1175/2010MWR3160.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Casati, B., and Coauthors, 2008: Forecast verification: Current status and future directions. Meteor. Appl., 15, 318, doi:10.1002/met.52.

    • Search Google Scholar
    • Export Citation
  • Chang, D.-E., J. A. Weinman, C. A. Morales, and W. S. Olson, 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm. Mon. Wea. Rev., 129, 18091833, doi:10.1175/1520-0493(2001)129<1809:TEOSMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjic, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta Model. Bound.-Layer Meteor., 85, 391421, doi:10.1023/A:1000531001463.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and T. C. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, doi:10.1175/MWR3467.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2010a: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 10521081, doi:10.1175/2010WAF2222390.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and M. L. Weisman, 2010b: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF Model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, doi:10.1175/2010WAF2222404.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., K. L. Elmore, J. S. Kain, S. J. Weiss, M. Xue, and M. L. Weisman, 2010: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. Wea. Forecasting, 25, 408427, doi:10.1175/2009WAF2222258.1.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., Z. Li, H. Lean, N. Roberts, and S. Ballard, 2009: Impact of data assimilation on forecasting convection over the United Kingdom using a high-resolution version of the Met Office Unified Model. Mon. Wea. Rev., 137, 15621584, doi:10.1175/2008MWR2561.1.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 14981510, doi:10.1175/2009WAF2222251.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmos. Res., 98, 327340, doi:10.1016/j.atmosres.2010.07.011.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., M. S. Gilmore, E. R. Mansell, L. J. Wicker, and J. M. Straka, 2006: Electrification and lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134, 31493172, doi:10.1175/MWR3231.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173743, doi:10.1175/2009MWR2946.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., X.-M. Shao, T. Hamlin, J. M. Reisner, and J. Harlin, 2011: Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of Hurricanes Rita and Katrina. Mon. Wea. Rev., 139, 14921504, doi:10.1175/2010MWR3532.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW Model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 26092627, doi:10.1175/MWR-D-11-00299.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. Ziegler, and D. R. MacGorman, 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW Model: Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon. Wea. Rev., 141, 23902415, doi:10.1175/MWR-D-12-00278.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Gao, C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and S. R. Dembek, 2014: Evaluation of a cloud-scale lightning data assimilation technique and a 3DVAR method for the analysis and short-term forecast of the 29 June 2012 derecho event. Mon. Wea. Rev., 142, 183202, doi:10.1175/MWR-D-13-00142.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1981: Preliminary numerical tests of the modification of mesoscale convective systems. J. Appl. Meteor., 20, 910921, doi:10.1175/1520-0450(1981)020<0910:PNTOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kain, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, doi:10.1175/JAS-D-11-0162.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and Coauthors, 2013: A real-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings. Wea. Forecasting, 28, 727745, doi:10.1175/WAF-D-12-00093.1.

    • Search Google Scholar
    • Export Citation
  • Godinez, H. C., J. M. Reisner, A. O. Fierro, S. R. Guimond, and J. Kao, 2012: Determining key model parameters of rapidly intensifying Hurricane Guillermo (1997) using the ensemble Kalman filter. J. Atmos. Sci., 69, 31473171, doi:10.1175/JAS-D-12-022.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and D. R. MacGorman, 1986: Cloud-to-ground lightning activity in mesoscale convective complexes. Mon. Wea. Rev., 114, 23202328, doi:10.1175/1520-0493(1986)114<2320:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2012: The GOES-R proving ground: Accelerating user readiness for the next-generation geostationary environmental satellite system. Bull. Amer. Meteor. Soc., 93, 10291040, doi:10.1175/BAMS-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Grams, J. S., W. A. Gallus, S. E. Koch, L. S. Wharton, A. Loughe, and E. E. Ebert, 2006: The use of a modified Ebert–McBride technique to evaluate mesoscale model QPF as a function of convective system morphology during IHOP 2002. Wea. Forecasting, 21, 288306, doi:10.1175/WAF918.1.

    • Search Google Scholar
    • Export Citation
  • Gurka, J. J., T. A. Schmit, T. M. Renkevens, M. M. Gunshor, and J. Li, 2006: Update on baseline instruments for GOES-R series. Atmospheric and Environmental Remote Sensing Data Processing and Utilization II: Perspective on Calibration/ Validation Initiatives and Strategies, A. H. L. Huang and H. J. Bloom, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6301), 63010H, doi:10.1117/12.683701.

  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houtekamer, P. L., and H. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, doi:10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, J. Pinto, and C. Alexander, 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating high-resolution rapid refresh model. Wea. Forecasting, 28, 921939, doi:10.1175/WAF-D-12-00085.1.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jenkner, J., C. Frei, and C. Schwierz, 2008: Quantile-based short- range QPF evaluation over Switzerland. Meteor. Z., 17, 827848, doi:10.1127/0941-2948/2008/0344.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2014: Forecast evaluation of an observing system simulation experiment assimilating both radar and satellite data. Mon. Wea. Rev., 142, 107124, doi:10.1175/MWR-D-13-00151.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2010a: Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting–research environment. Wea. Forecasting, 25, 15101521, doi:10.1175/2010WAF2222405.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010b: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, doi:10.1175/2010WAF2222430.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., G. Kelman, and G. Ellrod, 2015: An evaluation of the efficacy of using observed lightning to improve convective lightning forecasts. Wea. Forecasting, doi:10.1175/WAF-D-13-00028.1, in press.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221251, doi:10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Meoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2014: Storm-scale ensemble Kalman filter assimilation of total lightning flash data. Mon. Wea. Rev., 142, 36833695, doi:10.1175/MWR-D-14-00061.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and D. R. MacGorman, 2007: A lightning data assimilation technique for mesoscale forecast models. Mon. Wea. Rev., 135, 17321748, doi:10.1175/MWR3387.1.

    • Search Google Scholar
    • Export Citation
  • Marchand, M., and H. Fuelberg, 2014: Assimilation of lightning data using a nudging method involving low-level warming. Mon. Wea. Rev., 142, 48504871, doi:10.1175/MWR-D-14-00076.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 2008: Bias adjusted precipitation threat scores. Adv. Geosci., 16, 137142, doi:10.5194/adgeo-16-137-2008.

  • Mlawer, E., S. Taubman, P. Brown, M. Iacono, and S. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, A., T. G. Chronis, and E. N. Anagnostou, 2005: Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Wea. Rev., 133, 19611977, doi:10.1175/MWR2957.1.

    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Businger, 2009: The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean. Mon. Wea. Rev., 137, 31773195, doi:10.1175/2009MWR2765.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., 2005: An investigation of the ability of a storm scale configuration of the Met Office NWP model to predict flood-producing rainfall. Met Office Tech. Rep. 455, 80 pp.

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and L. S. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956, doi:10.1029/97JD02644.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, doi:10.1175/2009WAF2222267.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-On-Forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., D. M. Barker, N. A. Crook, J. Sun, and Q. Xiao, 2009: An examination of WRF 3DVAR data assimilation on its capabilities in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Wea. Rev., 137, 40114029, doi:10.1175/2009MWR2839.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., T. C. Chen, and S. E. Taylor, 2009: Evaluations of NAM forecasts on midtropospheric perturbation-induced convective storms over the U.S. northern plains. Wea. Forecasting, 24, 13091333, doi:10.1175/2009WAF2222185.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36 h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 617 147 16
PDF Downloads 393 64 3