Prediction of Indian Summer Monsoon Onset Using Dynamical Subseasonal Forecasts: Effects of Realistic Initialization of the Atmosphere

Andrea Alessandri Agenzia Nazionale per le nuove Tecnologie, l’energia e lo sviluppo economico sostenibile, Rome, Italy, and International Pacific Research Center, Honolulu, Hawaii

Search for other papers by Andrea Alessandri in
Current site
Google Scholar
PubMed
Close
,
Andrea Borrelli Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy

Search for other papers by Andrea Borrelli in
Current site
Google Scholar
PubMed
Close
,
Annalisa Cherchi Centro Euro-Mediterraneo sui Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Search for other papers by Annalisa Cherchi in
Current site
Google Scholar
PubMed
Close
,
Stefano Materia Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy

Search for other papers by Stefano Materia in
Current site
Google Scholar
PubMed
Close
,
Antonio Navarra Centro Euro-Mediterraneo sui Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Search for other papers by Antonio Navarra in
Current site
Google Scholar
PubMed
Close
,
June-Yi Lee Research Center for Climate Sciences, Pusan National University, Busan, South Korea

Search for other papers by June-Yi Lee in
Current site
Google Scholar
PubMed
Close
, and
Bin Wang International Pacific Research Center, Honolulu, Hawaii

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ensembles of retrospective 2-month dynamical forecasts initiated on 1 May are used to predict the onset of the Indian summer monsoon (ISM) for the period 1989–2005. The subseasonal predictions (SSPs) are based on a coupled general circulation model and recently they have been upgraded by the realistic initialization of the atmosphere with initial conditions taken from reanalysis. Two objective large-scale methods based on dynamical-circulation and hydrological indices are applied to detect the ISM onset. The SSPs show some skill in forecasting earlier-than-normal ISM onsets, while they have difficulty in predicting late onsets. It is shown that significant contribution to the skill in forecasting early ISM onsets comes from the newly developed initialization of the atmosphere from reanalysis. On one hand, atmospheric initialization produces a better representation of the atmospheric mean state in the initial conditions, leading to a systematically improved monsoon onset sequence. On the other hand, the initialization of the atmosphere allows some skill in forecasting the northward-propagating intraseasonal wind and precipitation anomalies over the tropical Indian Ocean. The northward-propagating intraseasonal modes trigger the monsoon in some early-onset years. The realistic phase initialization of these modes improves the forecasts of the associated earlier-than-normal monsoon onsets. The prediction of late onsets is not noticeably improved by the initialization of the atmosphere. It is suggested that late onsets of the monsoon are too far away from the start date of the forecasts to conserve enough memory of the intraseasonal oscillation (ISO) anomalies and of the improved representation of the mean state in the initial conditions.

Corresponding author address: Andrea Alessandri, Agenzia Nazionale per le nuove Tecnologie, l’energia e lo sviluppo economico sostenibile, Via Anguillarese, 301 Sp. 118 CR Casaccia, 00123 Santa Maria di Galeria, Rome, Italy. E-mail: andrea.alessandri@enea.it

Abstract

Ensembles of retrospective 2-month dynamical forecasts initiated on 1 May are used to predict the onset of the Indian summer monsoon (ISM) for the period 1989–2005. The subseasonal predictions (SSPs) are based on a coupled general circulation model and recently they have been upgraded by the realistic initialization of the atmosphere with initial conditions taken from reanalysis. Two objective large-scale methods based on dynamical-circulation and hydrological indices are applied to detect the ISM onset. The SSPs show some skill in forecasting earlier-than-normal ISM onsets, while they have difficulty in predicting late onsets. It is shown that significant contribution to the skill in forecasting early ISM onsets comes from the newly developed initialization of the atmosphere from reanalysis. On one hand, atmospheric initialization produces a better representation of the atmospheric mean state in the initial conditions, leading to a systematically improved monsoon onset sequence. On the other hand, the initialization of the atmosphere allows some skill in forecasting the northward-propagating intraseasonal wind and precipitation anomalies over the tropical Indian Ocean. The northward-propagating intraseasonal modes trigger the monsoon in some early-onset years. The realistic phase initialization of these modes improves the forecasts of the associated earlier-than-normal monsoon onsets. The prediction of late onsets is not noticeably improved by the initialization of the atmosphere. It is suggested that late onsets of the monsoon are too far away from the start date of the forecasts to conserve enough memory of the intraseasonal oscillation (ISO) anomalies and of the improved representation of the mean state in the initial conditions.

Corresponding author address: Andrea Alessandri, Agenzia Nazionale per le nuove Tecnologie, l’energia e lo sviluppo economico sostenibile, Via Anguillarese, 301 Sp. 118 CR Casaccia, 00123 Santa Maria di Galeria, Rome, Italy. E-mail: andrea.alessandri@enea.it
Save
  • Alessandri, A., 2006: Effects of land surface and vegetation processes on the climate simulated by an atmospheric general circulation model. Ph.D. thesis in Geophysics, Bologna University Alma Mater Studiorum, Bologna, Italy, 114 pp.

  • Alessandri, A., S. Gualdi, J. Polcher, and A. Navarra, 2007: Effects of land surface–vegetation on the boreal summer surface climate of a GCM. J. Climate, 20, 255277, doi:10.1175/JCLI3983.1.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., A. Borrelli, S. Masina, P. D. Pietro, A. F. Carril, A. Cherchi, S. Gualdi, and A. Navarra, 2010: The CMCC-INGV Seasonal Prediction System: Improved ocean initial conditions. Mon. Wea. Rev., 138, 29302952, doi:10.1175/2010MWR3178.1.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., A. Borrelli, A. Navarra, A. Arribas, M. Déqué, P. Rogel, and A. Weisheimer, 2011: Evaluation of probabilistic quality and value of the ENSEMBLES multimodel seasonal forecasts: Comparison with DEMETER. Mon. Wea. Rev., 139, 581607, doi:10.1175/2010MWR3417.1.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., P. Fogli, M. Vichi, and N. Zeng, 2012: Strengthening of the hydrological cycle in future scenarios: Atmospheric energy and water balance perspective. Earth Syst. Dyn., 3, 199212, doi:10.5194/esd-3-199-2012.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and J.-N. Thépaut, 2008: ECMWFs 4D-Var data assimilation system—The genesis and ten years in operations. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 812.

    • Search Google Scholar
    • Export Citation
  • Bellucci, A., S. Masina, P. D. Pietro, and A. Navarra, 2007: Using temperature–salinity relations in a global ocean implementation of a multivariate data assimilation scheme. Mon. Wea. Rev., 135, 37853807, doi:10.1175/2007MWR1821.1.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive. Tech. ERA Rep. Series 1, ECMWF, Reading, United Kingdom, 16 pp.

  • Borrelli, A., S. Materia, A. Bellucci, A. Alessandri, and S. Gualdi, 2012: Seasonal Prediction System at CMCC. CMCC Tech. Rep., CMCC, 18 pp.

  • Cherchi, A., and A. Navarra, 2003: Reproducibility and predictability of the Asian summer monsoon in the ECHAM4-GCM. Climate Dyn., 20, 365379, doi:10.1007/s00382-002-0280-6.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and A. Navarra, 2013: Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability. Climate Dyn., 41, 81103, doi:10.1007/s00382-012-1602-y.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Conguration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc.,137, 553–597, doi:10.1002/qj.828.

  • Ding, Y., and D. Sikka, 2006: Synoptic systems and weather. The Asian Monsoon, B. Wang, Ed., Springer, 131–201.

  • DiPietro, P., and S. Masina, 2009: The CMCC-INGV global ocean data assimilation system (CIGODAS). Tech. Rep. RP0071, Centro Euro-Mediterraneo per i Cambiamenti Climatici, 39 pp.

  • Fasullo, J., and P. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 32003211, doi:10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. Flatau, and D. Rudnick, 2001: The dynamics of double monsoon onsets. J. Climate, 14, 41304146, doi:10.1175/1520-0442(2001)014<4130:TDODMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. Flatau, J. Schmidt, and G. Kiladis, 2003: Delayed onset of the 2002 Indian monsoon. Geophys. Res. Lett., 30, 17681771, doi:10.1029/2003GL017434.

    • Search Google Scholar
    • Export Citation
  • Fogli, P., and Coauthors, 2009: INGV-CMCC carbon (ICC): A carbon cycle Earth system model. CMCC Tech. Rep. RP0061, CMCC, 31 pp. [Available online at http://www.cmcc.it/publications-meetings/publications/research-papers/rp0061-ingv-cmcc-carbon-icc-a-carbon-cycle-earth-system-model.]

  • Fu, X., B. Wang, Q. Bao, P. Liu, and J.-Y. Lee, 2009: Impacts of initial conditions on monsoon intraseasonal forecasting. Geophys. Res. Lett., 36, L08801, doi:10.1029/2009GL037166.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, J.-Y. Lee, W. Wang, and L. Gao, 2011: Sensitivity of dynamical intraseasonal prediction skill to different initial conditions. Mon. Wea. Rev., 139, 25722592, doi:10.1175/2011MWR3584.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, B. Wang, W. Wang, and F. Vitart, 2013: Intraseasonal forecasting of Asian summer monsoon in four operational and research models. J. Climate, 26, 41864203, doi:10.1175/JCLI-D-12-00252.1.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and S. Sajani, 1998: Monsoon precipitation in the AMIP runs. Climate Dyn., 14, 659689, doi:10.1007/s003820050248.

  • Gerrity, J. P., Jr., 1992: A note on Gandin and Murphy’s equitable skill score. Mon. Wea. Rev., 120, 27092712, doi:10.1175/1520-0493(1992)120<2709:ANOGAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Goswami, B., 2005: South Asian summer monsoon: An overview. The Global Monsoon System: Research and Forecast, C. Chang, B. Wang, and N. Lau, Eds., WMO Tech. Doc. 1266, 28 pp.

  • Goswami, B., J. Kulkarni, V. Mujumdar, and R. Chattopadhyay, 2010: On factors responsible for recent secular trend in the onset phase of monsoon intraseasonal oscillations. Int. J. Climatol., 30, 22402246, doi:10.1002/joc.2041.

    • Search Google Scholar
    • Export Citation
  • India Meteorological Department, 1943: Climatological Atlas for Airman. India Meteorological Department, 100 pp.

  • Joseph, P., J. Eishcheid, and R. Pyle, 1994: Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, 81105, doi:10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joseph, P., K. Sooraj, and C. Rajan, 2006: The summer monsoon onset process over South Asia and an objective method for the date of monsoon onset over Kerala. Int. J. Climatol.,26, 1871–1893, doi:10.1002/joc.1340.

  • Ju, J., and J. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 121, 11331168, doi:10.1002/qj.49712152509.

    • Search Google Scholar
    • Export Citation
  • Kang, I. S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383395, doi:10.1007/s00382-002-0245-9.

    • Search Google Scholar
    • Export Citation
  • Kirchner, I., 2001: The INTER handbook. Tech. Rep., Max-Planck-Institut fur Meteorologie. Hamburg, Germany, 20 pp.

  • Krishnamurthy, P., and J. Shukla, 2011: Predictability of the Indian monsoon in coupled general circulation models. COLA Tech. Rep., July 2011, 45 pp.

  • Krishnamurti, T., 1985: Summer Monsoon Experiment—A review. Mon. Wea. Rev., 113, 15901626, doi:10.1175/1520-0493(1985)113<1590:SMER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095, doi:10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267283, doi:10.1007/s00382-010-0857-4.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, M. Wheeler, X. Fu, D. Waliser, and I. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-E., and K.-H. Seo, 2013: The development of a statistical forecast model for Changma. Wea. Forecasting, 28, 13041321, doi:10.1175/WAF-D-13-00003.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, J. Kyung, and E. Schemm, 2011: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Climate Dyn., 36, 11731188, doi:10.1007/s00382-010-0832-0.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., B. Wang, D. E. Waliser, J. M. Neena, and J.-Y. Lee, 2015: Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment. Climate Dyn., in press.

  • Li, J., and L. Zhang, 2009: Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Climate Dyn., 32, 935968, doi:10.1007/s00382-008-0465-8.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA version 8.1 Ocean General Circulation Model reference manual. Tech. Rep. Note 11, LODYC/IPSL, 91 pp.

  • Masina, S., P. di Pietro, A. Storto, and A. Navarra, 2011: Global ocean re-analyses for climate applications. Dyn. Atmos. Oceans,52, 341–366, doi:10.1016/j.dynatmoce.2011.03.006.

  • Materia, S., A. Borrelli, A. Bellucci, A. Alessandri, P. Di Pietro, P. Athanasiadis, A. Navarra, and S. Gualdi, 2014: Impact of atmosphere and land surface initial conditions on seasonal forecasts of global surface temperature. J. Climate, 27, 9253–9271, doi:10.1175/JCLI-D-14-00163.1.

    • Search Google Scholar
    • Export Citation
  • Neena, J., J.-Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 4531–4543, doi:10.1175/JCLI-D-13-00624.1.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., and R. M. Nair, 2009: Summer monsoon onset over Kerala: New definition and prediction. J. Earth Syst. Sci., 118, 123135, doi:10.1007/s12040-009-0020-y.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, doi:10.1175/BAMS-85-6-853.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., A. Munot, and D. Kothwale, 1994: All-India monthly and seasonal rainfall series: 1871–1993. Theor. Appl. Climatol., 49, 217224, doi:10.1007/BF00867461.

    • Search Google Scholar
    • Export Citation
  • Pearce, R., and U. Mohanty, 1984: Onsets of the Asian summer monsoon 1979–82. J. Atmos. Sci., 41, 16201639, doi:10.1175/1520-0469(1984)041<1620:OOTASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Preethi, B., R. Kripalani, and K. Kumar, 2010: Indian summer monsoon rainfall variability in global coupled ocean-atmospheric models. Climate Dyn., 35, 15211539, doi:10.1007/s00382-009-0657-x.

    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., P. Terray, S. Masson, G. Boschat, and T. Izumo, 2014: Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Climate Dyn., doi:10.1007/s00382-014-2200-y, in press.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., and R. Nanjundiah, 2009: Coupled model simulations of twentieth century climate of the Indian summer monsoon. Current Trends in Science, N. Mukunda, Ed., Indian Academy of Sciences, 537–568.

  • Rajeevan, M., C. Unnikrishnan, and B. Preethi, 2012: Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Climate Dyn., 38, 22572274, doi:10.1007/s00382-011-1061-x.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Tech. Rep. 218, Max-Planck-Institut fr Meteorologie, 94 pp.

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Tech. Rep. 349, Max-Planck-Institut fur Meteorologie, Hamburg, Germany, 127 pp.

  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791, doi:10.1175/JCLI3824.1.

    • Search Google Scholar
    • Export Citation
  • Sankar, S., M. R. Kumar, and C. Reason, 2011: On the relative roles of El Niño and Indian Ocean dipole events on the monsoon onset over Kerala. Theor. Appl. Climatol., 103, 359374, doi:10.1007/s00704-010-0306-7.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, A. Bellucci, A. Carril, P. Fogli, and A. Navarra, 2007: CMCC-SXF025: A high-resolution coupled atmosphere ocean general circulation climate model. Tech. Rep. 18, Centro Euro-Mediterraneo per i Cambiamenti Climatici, 63 pp.

  • Seo, K.-H., J. Schemm, W. Wang, and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP climate forecast system: The effect of sea surface temperature. Mon. Wea. Rev., 135, 18071827, doi:10.1175/MWR3369.1.

    • Search Google Scholar
    • Export Citation
  • Soman, M., and K. K. Kumar, 1993: Space–time evolution of meteorological features associated with the onset of the Indian summer monsoon. Mon. Wea. Rev., 121, 11771194, doi:10.1175/1520-0493(1993)121<1177:STEOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K., H. Annamalai, I. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 and CMIP3 simulations on the late 20th century. Climate Dyn., 41, 27112744, doi:10.1007/s00382-012-1607-6.

    • Search Google Scholar
    • Export Citation
  • Stephens, G., P. Webster, R. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17, 22132224, doi:10.1175/1520-0442(2004)017<2213:OEFTMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, W., and K. Miyakoda, 1995: Feasibility of seasonal forecasts inferred from multiple GCM simulations. J. Climate, 8, 10711085, doi:10.1175/1520-0442(1995)008<1071:FOSFIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taniguchi, K., and T. Koike, 2006: Comparison of definitions of Indian summer monsoon onset: Better representation of rapid transitions of atmospheric conditions. Geophys. Res. Lett., 33, L02709, doi:10.1029/2005GL024526.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Etheb, and V. Duliere, 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea ice ocean model. Ocean Modell., 8, 175201, doi:10.1016/j.ocemod.2003.12.009.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. Tech. Rep. TR/CMGC/00-10, CERFACS, 85 pp.

  • Vichi, M., E. Manzini, P. Fogli, A. Alessandri, L. Patara, E. Scoccimarro, S. Masina, and A. Navarra, 2011: Global and regional ocean carbon uptake and climate change: Sensitivity to an aggressive mitigation scenario. Climate Dyn., 37, 19291947, doi:10.1007/s00382-011-1079-0.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2009: Dynamical extended range prediction of early monsoon rainfall over India. Mon. Wea. Rev., 137, 14801492, doi:10.1175/2008MWR2761.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., I. Kang, and J.-Y. Lee, 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803818, doi:10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, and P. Joseph, 2009: Objective definition of the Indian summer monsoon onset. J. Climate, 22, 33033316, doi:10.1175/2008JCLI2675.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P., 2013: Improve weather forecasts for the developing world. Nature, 493, 1719, doi:10.1038/493017a.

  • Webster, P., and C. Hoyos, 2004: Prediction of monsoon rainfall and river discharge on 15–30-day time scales. Bull. Amer. Meteor. Soc., 85, 17451765, doi:10.1175/BAMS-85-11-1745.

    • Search Google Scholar
    • Export Citation
  • Webster, P., V. Magana, T. Palmer, J. Shukla, R. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi:10.1029/2009GL040896.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 630 pp.

  • World Meteorological Organization, 2010: Manual on the Global Data-Processing and Forecasting System. Attachment II, Global Aspects, Vol. I, WMO-485, World Meteorological Organization, I.8-1–II.8-17.

  • Xavier, P., C. Marzin, and B. Goswami, 2007: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. Quart. J. Roy. Meteor. Soc., 133, 749764, doi:10.1002/qj.45.

    • Search Google Scholar
    • Export Citation
  • Yu, W.-D., J.-W. Shi, L. Liu, K.-P. Li, Y.-L. Liu, and H.-W. Wang, 2012: The onset of the monsoon over the Bay of Bengal: The observed common features for 2008–2011. Atmos. Ocean Sci. Lett., 5, 314318.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1049 553 23
PDF Downloads 397 107 7