Impact of Identification Method on the Inferred Characteristics and Variability of Australian East Coast Lows

Acacia S. Pepler Centre for Excellence for Climate System Science and Climate Change Research Centre, University of New South Wales, Sydney, Australia

Search for other papers by Acacia S. Pepler in
Current site
Google Scholar
PubMed
Close
,
Alejandro Di Luca Centre for Excellence for Climate System Science and Climate Change Research Centre, University of New South Wales, Sydney, Australia

Search for other papers by Alejandro Di Luca in
Current site
Google Scholar
PubMed
Close
,
Fei Ji New South Wales Office of Environment and Heritage, Sydney, Australia

Search for other papers by Fei Ji in
Current site
Google Scholar
PubMed
Close
,
Lisa V. Alexander Centre for Excellence for Climate System Science and Climate Change Research Centre, University of New South Wales, Sydney, Australia

Search for other papers by Lisa V. Alexander in
Current site
Google Scholar
PubMed
Close
,
Jason P. Evans Centre for Excellence for Climate System Science and Climate Change Research Centre, University of New South Wales, Sydney, Australia

Search for other papers by Jason P. Evans in
Current site
Google Scholar
PubMed
Close
, and
Steven C. Sherwood Centre for Excellence for Climate System Science and Climate Change Research Centre, University of New South Wales, Sydney, Australia

Search for other papers by Steven C. Sherwood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Australian east coast low (ECL) is both a major cause of damaging severe weather and an important contributor to rainfall and dam inflow along the east coast, and is of interest to a wide range of groups including catchment managers and emergency services. For this reason, several studies in recent years have developed and interrogated databases of east coast lows using a variety of automated cyclone detection methods and identification criteria. This paper retunes each method so that all yield a similar event frequency within the ECL region, to enable a detailed intercomparison of the similarities, differences, and relative advantages of each method. All methods are shown to have substantial skill at identifying ECL events leading to major impacts or explosive development, but the choice of method significantly affects both the seasonal and interannual variation of detected ECL numbers. This must be taken into consideration in studies on trends or variability in ECLs, with a subcategorization of ECL events by synoptic situation of key importance.

Denotes Open Access content.

Corresponding author address: Acacia S. Pepler, Climate Change Research Centre, High St., University of New South Wales, Sydney, NSW 2052, Australia. E-mail: a.pepler@student.unsw.edu.au

Abstract

The Australian east coast low (ECL) is both a major cause of damaging severe weather and an important contributor to rainfall and dam inflow along the east coast, and is of interest to a wide range of groups including catchment managers and emergency services. For this reason, several studies in recent years have developed and interrogated databases of east coast lows using a variety of automated cyclone detection methods and identification criteria. This paper retunes each method so that all yield a similar event frequency within the ECL region, to enable a detailed intercomparison of the similarities, differences, and relative advantages of each method. All methods are shown to have substantial skill at identifying ECL events leading to major impacts or explosive development, but the choice of method significantly affects both the seasonal and interannual variation of detected ECL numbers. This must be taken into consideration in studies on trends or variability in ECLs, with a subcategorization of ECL events by synoptic situation of key importance.

Denotes Open Access content.

Corresponding author address: Acacia S. Pepler, Climate Change Research Centre, High St., University of New South Wales, Sydney, NSW 2052, Australia. E-mail: a.pepler@student.unsw.edu.au
Save
  • Abbs, D., and Coauthors, 2006: Projections of extreme rainfall and cyclones: Final report to the Australian Greenhouse Office. CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia, 97 pp. [Available online at https://publications.csiro.au/rpr/pub?list=SEA&pid=procite:9f7fb6b5-5433-4685-ac47-f6145c2041e2.]

  • Allen, J. T., A. B. Pezza, and M. T. Black, 2010: Explosive cyclogenesis: A global climatology comparing multiple reanalyses. J. Climate, 23, 64686484, doi:10.1175/2010JCLI3437.1.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., B. U. Neeman, and Y. Shay-El, 1990: Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus, 42A, 6577, doi:10.1034/j.1600-0870.1990.00007.x.

    • Search Google Scholar
    • Export Citation
  • Baehr, C., B. Pouponneau, F. Ayrault, and A. Joly, 1999: Dynamical characterization of the FASTEX cyclogenesis cases. Quart. J. Roy. Meteor. Soc., 125, 34693494, doi:10.1002/qj.49712556117.

    • Search Google Scholar
    • Export Citation
  • Browning, S. A., and I. D. Goodwin, 2013: Large-scale influences on the evolution of winter subtropical maritime cyclones affecting Australia’s east coast. Mon. Wea. Rev., 141, 24162431, doi:10.1175/MWR-D-12-00312.1.

    • Search Google Scholar
    • Export Citation
  • Callaghan, J., and P. Helman, 2008: Severe storms on the east coast of Australia, 1770-2008. Griffith Centre for Coastal Management, Griffith University, Gold Coast, Queensland, Australia, 240 pp. [Available online at http://www.goldcoast.qld.gov.au/documents/bf/storms-east-coast-1770-2008.pdf.]

  • Chambers, C. R. S., G. B. Brassington, I. Simmonds, and K. Walsh, 2014: Precipitation changes due to the introduction of eddy-resolved sea surface temperatures into simulations of the “Pasha Bulker” Australian east coast low of June 2007. Meteor. Atmos. Phys., 125, 115, doi:10.1007/s00703-014-0318-4.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., G. A. Mills, and B. Timbal, 2011: Large-scale indicators of Australian east coast lows and associated extreme weather events. Centre for Australian Weather and Climate Research, Tech. Rep. 37, 102 pp. [Available online at http://cawcr.gov.au/publications/technicalreports/CTR_037.pdf.]

  • Dowdy, A. J., G. A. Mills, and B. Timbal, 2013a: Large-scale diagnostics of extratropical cyclogenesis in eastern Australia. Int. J. Climatol., 33, 23182327, doi:10.1002/joc.3599.

    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., G. A. Mills, B. Timbal, M. Griffiths, and Y. Wang, 2013b: Understanding rainfall projections in relation to extratropical cyclones in eastern Australia. Aust. Meteor. Ocean J., 63, 355364.

    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., G. A. Mills, B. Timbal, and Y. Wang, 2013c: Changes in the risk of extratropical cyclones in eastern Australia. J. Climate, 26, 14031417, doi:10.1175/JCLI-D-12-00192.1.

    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., G. A. Mills, B. Timbal, and Y. Wang, 2014: Fewer large waves projected for eastern Australia due to decreasing storminess. Nat. Climate Change, 4, 283286, doi:10.1038/nclimate2142.

    • Search Google Scholar
    • Export Citation
  • Grieger, J., G. C. Leckebusch, M. G. Donat, M. Schuster, and U. Ulbrich, 2014: Southern Hemisphere winter cyclone activity under recent and future climate conditions in multi-model AOGCM simulations. Int. J. Climatol., 34, 3400–3416, doi:10.1002/joc.3917.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., 2009: Diminutive frontal waves—A link between fronts and cyclones. J. Atmos. Sci., 66, 116132, doi:10.1175/2008JAS2719.1.

    • Search Google Scholar
    • Export Citation
  • Hope, P., and Coauthors, 2014: A comparison of automated methods of front recognition for climate studies: A case study in southwest Western Australia. Mon. Wea. Rev., 142, 343–363, doi:10.1175/MWR-D-12-00252.1.

    • Search Google Scholar
    • Export Citation
  • Hopkins, L. C., and G. J. Holland, 1997: Australian heavy-rain days and associated east coast cyclones: 1958–92. J. Climate, 10, 621635, doi:10.1175/1520-0442(1997)010<0621:AHRDAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Jones, D. A., and I. Simmonds, 1993: A climatology of Southern Hemisphere extratropical cyclones. Climate Dyn., 9, 131145, doi:10.1007/BF00209750.

    • Search Google Scholar
    • Export Citation
  • Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Ocean J., 58, 233248.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, A. D., L. V. Alexander, and M. G. Donat, 2013: The efficacy of using gridded data to examine extreme rainfall characteristics: A case study for Australia. Int. J. Climatol., 33, 23762387, doi:10.1002/joc.3588.

    • Search Google Scholar
    • Export Citation
  • König, W., R. Sausen, and F. Sielmann, 1993: Objective identification of cyclones in GCM simulations. J. Climate, 6, 22172231, doi:10.1175/1520-0442(1993)006<2217:OIOCIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kouroutzoglou, J., H. A. Flocas, K. Keay, I. Simmonds, and M. Hatzaki, 2011: Climatological aspects of explosive cyclones in the Mediterranean. Int. J. Climatol., 31, 17851802, doi:10.1002/joc.2203.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2002: Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon. Wea. Rev., 130, 21882209, doi:10.1175/1520-0493(2002)130<2188:ECDITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2007: Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J. Climate, 20, 26752690, doi:10.1175/JCLI4135.1.

    • Search Google Scholar
    • Export Citation
  • Mesquita, M. S., D. E. Atkinson, I. Simmonds, K. Keay, and J. Gottschalck, 2009: New perspectives on the synoptic development of the severe October 1992 Nome storm. Geophys. Res. Lett., 36, L13808, doi:10.1029/2009GL038824.

    • Search Google Scholar
    • Export Citation
  • Mills, G. A., R. Webb, N. E. Davidson, J. Kepert, A. Seed, and D. Abbs, 2010: The Pasha Bulker east coast low of 8 June 2007. CAWCR Tech. Rep. 023, 72 pp. [Available online at http://cawcr.gov.au/publications/technicalreports/CTR_023.pdf.]

  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39, 155166.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., and C. S. Rakich, 2010: Extreme inflow events and synoptic forcing in Sydney catchments. IOP Conf. Ser. Earth Environ. Sci.,11, 012010, doi:10.1088/1755-1315/11/1/012010.

  • Pepler, A. S., and A. Coutts-Smith, 2013: A new, objective, database of East Coast Lows. Aust. Meteor. Ocean J., 63, 461472.

  • Pepler, A. S., A. Coutts-Smith, and B. Timbal, 2014: The role of East Coast Lows on rainfall patterns and inter-annual variability across the East Coast of Australia. Int. J. Climatol., 34, 10111021, doi:10.1002/joc.3741.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., and T. Ambrizzi, 2003: Variability of Southern Hemisphere cyclone and anticyclone behavior: Further analysis. J. Climate, 16, 10751083, doi:10.1175/1520-0442(2003)016<1075:VOSHCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., T. Spangehl, U. Ulbrich, and P. Speth, 2005: Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteor. Z., 14, 823838, doi:10.1127/0941-2948/2005/0068.

    • Search Google Scholar
    • Export Citation
  • Qi, L., L. M. Leslie, and M. S. Speer, 2006: Climatology of cyclones over the southwest Pacific: 1992–2001. Meteor. Atmos. Phys., 91, 201209, doi:10.1007/s00703-005-0149-4.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., R. J. Murray, and R. M. Leighton, 1999: A refinement of cyclone tracking methods with data from FROST. Aust. Meteor. Mag., Special Edition, 35–49. [Available online at http://www.bom.gov.au/amoj/docs/1999/simmonds.pdf.]

  • Simmonds, I., C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 57775796, doi:10.1175/2008JCLI2366.1.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122, 22392256, doi:10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Speer, M. S., P. Wiles, and A. Pepler, 2009: Low pressure systems off the New South Wales coast and associated hazardous weather: Establishment of a database. Aust. Meteor. Ocean J., 58, 2939.

    • Search Google Scholar
    • Export Citation
  • Uotila, P., A. B. Pezza, J. J. Cassano, K. Keay, and A. H. Lynch, 2009: A comparison of low pressure system statistics derived from a high-resolution NWP output and three reanalysis products over the Southern Ocean. J. Geophys. Res., 114, D17105, doi:10.1029/2008JD011583.

    • Search Google Scholar
    • Export Citation
  • Uotila, P., T. Vihma, A. B. Pezza, I. Simmonds, K. Keay, and A. H. Lynch, 2011: Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. J. Geophys. Res., 116, D07109, doi:10.1029/2010JD015358.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, doi:10.1175/JAS3766.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 539 212 76
PDF Downloads 290 62 4