Spatial Postprocessing of Ensemble Forecasts for Temperature Using Nonhomogeneous Gaussian Regression

Kira Feldmann Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

Search for other papers by Kira Feldmann in
Current site
Google Scholar
PubMed
Close
,
Michael Scheuerer National Oceanic and Atmospheric Administration, Boulder, Colorado

Search for other papers by Michael Scheuerer in
Current site
Google Scholar
PubMed
Close
, and
Thordis L. Thorarinsdottir Norwegian Computing Center, Oslo, Norway

Search for other papers by Thordis L. Thorarinsdottir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Statistical postprocessing techniques are commonly used to improve the skill of ensembles from numerical weather forecasts. This paper considers spatial extensions of the well-established nonhomogeneous Gaussian regression (NGR) postprocessing technique for surface temperature and a recent modification thereof in which the local climatology is included in the regression model to permit locally adaptive postprocessing. In a comparative study employing 21-h forecasts from the Consortium for Small Scale Modelling ensemble predictive system over Germany (COSMO-DE), two approaches for modeling spatial forecast error correlations are considered: a parametric Gaussian random field model and the ensemble copula coupling (ECC) approach, which utilizes the spatial rank correlation structure of the raw ensemble. Additionally, the NGR methods are compared to both univariate and spatial versions of the ensemble Bayesian model averaging (BMA) postprocessing technique.

Corresponding author address: Kira Feldmann, Heidelberg Institute for Theoretical Studies, Schlosswolfsbrunnenweg 35, 69118 Heidelberg, Germany. E-mail: kira.feldmann@h-its.org

Abstract

Statistical postprocessing techniques are commonly used to improve the skill of ensembles from numerical weather forecasts. This paper considers spatial extensions of the well-established nonhomogeneous Gaussian regression (NGR) postprocessing technique for surface temperature and a recent modification thereof in which the local climatology is included in the regression model to permit locally adaptive postprocessing. In a comparative study employing 21-h forecasts from the Consortium for Small Scale Modelling ensemble predictive system over Germany (COSMO-DE), two approaches for modeling spatial forecast error correlations are considered: a parametric Gaussian random field model and the ensemble copula coupling (ECC) approach, which utilizes the spatial rank correlation structure of the raw ensemble. Additionally, the NGR methods are compared to both univariate and spatial versions of the ensemble Bayesian model averaging (BMA) postprocessing technique.

Corresponding author address: Kira Feldmann, Heidelberg Institute for Theoretical Studies, Schlosswolfsbrunnenweg 35, 69118 Heidelberg, Germany. E-mail: kira.feldmann@h-its.org
Save
  • Anderes, E. B., and M. L. Stein, 2011: Local likelihood estimation for nonstationary random fields. J. Multivar. Anal., 102, 506–520, doi:10.1016/j.jmva.2010.10.010.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9, 1518–1530, doi:10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887–3905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Berrocal, V. J., A. E. Raftery, and T. Gneiting, 2007: Combining spatial statistical and ensemble information in probabilistic weather forecasts. Mon. Wea. Rev., 135, 1386–1402, doi:10.1175/MWR3341.1.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1–3, doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bröcker, J., 2012: Evaluating raw ensembles with the continous ranked probability score. Quart. J. Roy. Meteor. Soc., 138, 1611–1617, doi:10.1002/qj.1891.

    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and L. A. Smith, 2008: From ensemble forecasts to predictive distribution functions. Tellus, 60A, 663–678, doi:10.1111/j.1600-0870.2008.00333.x.

    • Search Google Scholar
    • Export Citation
  • Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu, 1995: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16, 1190–1208, doi:10.1137/0916069.

    • Search Google Scholar
    • Export Citation
  • Chilès, J.-P., and P. Delfiner, 2012: Geostatistics: Modeling Spatial Uncertainty. 2nd ed. John Wiley & Sons, 734 pp.

  • Cressie, N. A. C., 1985: Fitting variogram models by weighted least squares. Math. Geol., 17, 563–586, doi:10.1007/BF01032109.

  • Dawid, A. P., 1984: Statistical theory: The prequential approach (with discussion and rejoinder). J. Roy. Stat. Soc. A, 147, 278–292, doi:10.2307/2981683.

    • Search Google Scholar
    • Export Citation
  • Dawid, A. P., and P. Sebastiani, 1999: Coherent dispersion criteria for optimal experimental design. Ann. Stat., 27, 65–81, doi:10.1214/aos/1018031101.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., J. P. Hacker, Y. Zhou, X. Deng, and R. B. Stull, 2006: Probabilistic aspects of meteorological and ozone regional ensemble forecasts. J. Geophys. Res.,111, D24307, doi:10.1029/2005JD006917.

  • Doms, G., and U. Schättler, 2002: A description of the nonhydrostatic regional model LM: Dynamics and numerics. Tech. Rep., Deutscher Wetterdienst, 134 pp.

  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap.Chapman & Hall/CRC, 456 pp.

  • Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben-Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168–177, doi:10.1016/j.atmosres.2010.12.008.

    • Search Google Scholar
    • Export Citation
  • Gel, Y., A. E. Raftery, and T. Gneiting, 2004: Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation (GOP) method (with discussion and rejoinder). J. Amer. Stat. Assoc., 99, 575–590, doi:10.1198/016214504000000872.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., 2011: Making and evaluating point forecasts. J. Amer. Stat. Assoc., 106, 746–762, doi:10.1198/jasa.2011.r10138.

  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359–378, doi:10.1198/016214506000001437.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098–1118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. J. Roy. Stat. Soc., 69B, 243–268, doi:10.1111/j.1467-9868.2007.00587.x.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: Two-meter temperatures. Mon. Wea. Rev., 136, 2608–2619, doi:10.1175/2007MWR2410.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155–167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta-RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 1312–1327, doi:10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jun, M., I. Szunyogh, M. G. Genton, F. Zhang, and C. H. Bishop, 2011: A statistical investigation of the sensitivity of ensemble-based Kalman filters to covariance filtering. Mon. Wea. Rev., 139, 3036–3051, doi:10.1175/2011MWR3577.1.

    • Search Google Scholar
    • Export Citation
  • Kann, A., C. Wittmann, Y. Wang, and X. Ma, 2009: Calibrating 2-m temperature of limited-area ensemble forecasts using high-resolution analysis. Mon. Wea. Rev., 137, 3373–3387, doi:10.1175/2009MWR2793.1.

    • Search Google Scholar
    • Export Citation
  • Kleiber, W., A. E. Raftery, J. Baars, T. Gneiting, C. F. Mass, and E. P. Grimit, 2011: Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging. Mon. Wea. Rev., 139, 2630–2649, doi:10.1175/2010MWR3511.1.

    • Search Google Scholar
    • Export Citation
  • Kleiber, W., R. Katz, and B. Rajagopalan, 2013: Daily minimum and maximum temperature simulation over complex terrain. Ann. Appl. Stat., 7, 588–612, doi:10.1214/12-AOAS602.

    • Search Google Scholar
    • Export Citation
  • Lerch, S., and T. L. Thorarinsdottir, 2013: Comparison of nonhomogeneous regression models for probabilistic wind speed forecasting. Tellus, 65A, 21206, doi:10.3402/tellusa.v65i0.21206.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 3515–3539, doi:10.1016/j.jcp.2007.02.014.

  • Lewis, J. M., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133, 1865–1885, doi:10.1175/MWR2949.1.

  • Lindgren, F., H. Rue, and J. Lindström, 2011: An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach (with discussion). J. Roy. Stat. Soc., 73B, 423–498, doi:10.1111/j.1467-9868.2011.00777.x.

    • Search Google Scholar
    • Export Citation
  • Möller, A., A. Lenkoski, and T. L. Thorarinsdottir, 2013: Multivariate probabilistic forecasting using Bayesian model averaging and copulas. Quart. J. Roy. Meteor. Soc., 139, 982–991, doi:10.1002/qj.2009.

    • Search Google Scholar
    • Export Citation
  • Nordhausen, K., S. Sirkia, H. Oja, and D. E. Tyler, 2014: ICSNP: Tools for multivariate nonparametrics, version 1.0-9. R package. [Available online at http://CRAN.R-project.org/web/packages/ICSNP.]

  • Peralta, C., and M. Buchhold, 2011: Initial condition perturbations for the COSMO-DE-EPS. COSMO Newsl., 11, 115–123.

  • Pinson, P., and J. Tastu, 2013: Discrimination ability of the energy score. Tech. Rep., Technical University of Denmark, 16 pp.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–1174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, C. E., and C. K. I. Williams, 2006: Gaussian Processes for Machine Learning. The MIT Press, 266 pp.

  • R Core Team, 2013: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,Vienna, Austria. [Available online at http://www.R-project.org/.]

  • Roulin, E., and S. Vannitsem, 2012: Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Wea. Rev., 140, 874–888, doi:10.1175/MWR-D-11-00062.1.

    • Search Google Scholar
    • Export Citation
  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616–640, doi:10.1214/13-STS443.

    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 1086–1096, doi:10.1002/qj.2183.

    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and L. Büermann, 2014: Spatially adaptive post-processing of ensemble forecasts for temperature. J. Roy. Stat. Soc., 63C, 405–422, doi:10.1111/rssc.12040.

    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and G. König, 2014: Gridded, locally calibrated, probabilistic temperature forecasts based on ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 2582–2590, doi:10.1002/qj.2323.

    • Search Google Scholar
    • Export Citation
  • Schlather, M., 2011: RandomFields: Simulation and analysis of random fields, version 3.0.44. R package. [Available online at http://CRAN.R-project.org/package=RandomFields.]

  • Steppeler, J., G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 75–96, doi:10.1007/s00703-001-0592-9.

    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., and T. Gneiting, 2010: Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression. J. Roy. Stat. Soc., 173A, 371–388, doi:10.1111/j.1467-985X.2009.00616.x.

    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., and M. S. Johnson, 2012: Probabilistic wind gust forecasting using nonhomogeneous Gaussian regression. Mon. Wea. Rev., 140, 889–897, doi:10.1175/MWR-D-11-00075.1.

    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., M. Scheuerer, and C. Heinz, 2014: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms. J. Comput. Graph. Stat., doi:10.1080/10618600.2014.977447, in press.

    • Search Google Scholar
    • Export Citation
  • Van Schaeybroeck, B., and S. Vannitsem, 2014: Ensemble post-processing using member-by-member approaches: Theoretical aspects. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2397, in press.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier Academic Press, 704 pp.

  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 2379–2390, doi:10.1175/MWR3402.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 768 357 29
PDF Downloads 457 163 10