Distinctive Roles of Air–Sea Coupling on Different MJO Events: A New Perspective Revealed from the DYNAMO/CINDY Field Campaign

Xiouhua Fu International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Earth System Modelling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiouhua Fu in
Current site
Google Scholar
PubMed
Close
,
Wanqiu Wang Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
,
June-Yi Lee International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Pusan National University, Pusan, South Korea

Search for other papers by June-Yi Lee in
Current site
Google Scholar
PubMed
Close
,
Bin Wang International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
,
Kazuyoshi Kikuchi International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Kazuyoshi Kikuchi in
Current site
Google Scholar
PubMed
Close
,
Jingwei Xu Earth System Modelling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jingwei Xu in
Current site
Google Scholar
PubMed
Close
,
Juan Li International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Juan Li in
Current site
Google Scholar
PubMed
Close
, and
Scott Weaver Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Scott Weaver in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous observational analysis and modeling studies indicate that air–sea coupling plays an essential role in improving MJO simulations and extending MJO forecasting skills. However, whether the SST feedback plays an indispensable role for the existence of the MJO remains controversial, and the precise physical processes through which the SST feedback may lead to better MJO simulations and forecasts remain elusive.

The DYNAMO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY) field campaign recently completed over the Indian Ocean reveals a new perspective and provides better data to improve understanding of the MJO. It is found that among the five MJO events that occurred during the DYNAMO/CINDY field campaign, only two MJO events (the November and March ones) have robust SST anomalies associated with them. For the other three MJO events (the October, December, and January ones), no coherent SST anomalies are observed. This observational scenario suggests that the roles of air–sea coupling on the MJO vary greatly from event to event.

To elucidate the varying roles of air–sea coupling on different MJO events, a suite of hindcast experiments was conducted with a particular focus on the October and November MJO events. The numerical results confirm that the October MJO is largely controlled by atmospheric internal dynamics, while the November MJO is strongly coupled with underlying ocean. For the November MJO event, the positive SST anomalies significantly improve MJO forecasting by enhancing the response of a Kelvin–Rossby wave couplet, which prolongs the feedback between convection and large-scale circulations, and thus favors the development of stratiform rainfall, in turn, facilitating the production of eddy available potential energy and significantly amplifying the intensity of the model November MJO.

School of Ocean and Earth Science and Technology Contribution Number 9234, International Pacific Research Center Contribution Number 1092, and Earth System Modelling Center Contribution Number 23.

Corresponding author address: Dr. Joshua Xiouhua Fu, International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, 1680 East West Rd., POST Bldg. 409D, Honolulu, HI 96822. E-mail: xfu@hawaii.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Previous observational analysis and modeling studies indicate that air–sea coupling plays an essential role in improving MJO simulations and extending MJO forecasting skills. However, whether the SST feedback plays an indispensable role for the existence of the MJO remains controversial, and the precise physical processes through which the SST feedback may lead to better MJO simulations and forecasts remain elusive.

The DYNAMO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY) field campaign recently completed over the Indian Ocean reveals a new perspective and provides better data to improve understanding of the MJO. It is found that among the five MJO events that occurred during the DYNAMO/CINDY field campaign, only two MJO events (the November and March ones) have robust SST anomalies associated with them. For the other three MJO events (the October, December, and January ones), no coherent SST anomalies are observed. This observational scenario suggests that the roles of air–sea coupling on the MJO vary greatly from event to event.

To elucidate the varying roles of air–sea coupling on different MJO events, a suite of hindcast experiments was conducted with a particular focus on the October and November MJO events. The numerical results confirm that the October MJO is largely controlled by atmospheric internal dynamics, while the November MJO is strongly coupled with underlying ocean. For the November MJO event, the positive SST anomalies significantly improve MJO forecasting by enhancing the response of a Kelvin–Rossby wave couplet, which prolongs the feedback between convection and large-scale circulations, and thus favors the development of stratiform rainfall, in turn, facilitating the production of eddy available potential energy and significantly amplifying the intensity of the model November MJO.

School of Ocean and Earth Science and Technology Contribution Number 9234, International Pacific Research Center Contribution Number 1092, and Earth System Modelling Center Contribution Number 23.

Corresponding author address: Dr. Joshua Xiouhua Fu, International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, 1680 East West Rd., POST Bldg. 409D, Honolulu, HI 96822. E-mail: xfu@hawaii.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Anderson, S. P., R. A. Weller, and R. Lukas, 1996: Surface buoyancy forcing and the mixed layer in the western Pacific warm pool: Observation and 1D model results. J. Climate, 9, 30563085, doi:10.1175/1520-0442(1996)009<3056:SBFATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Araligidad, N. M., and E. D. Maloney, 2008: Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett., 35, L04815, doi:10.1029/2007GL032746.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406, doi:10.1175/2010BAMS3013.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45, 17091720, doi:10.1175/1520-0469(1988)045<1709:KWCAPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and Y.-C. Hsueh, 2010: Mechanisms of northward-propagating intraseasonal oscillation—A comparison between the Indian Ocean and the western North Pacific. J. Climate, 23, 66246640, doi:10.1175/2010JCLI3596.1.

    • Search Google Scholar
    • Export Citation
  • de Boisseson, E., M. A. Balmaseda, F. Vitart, and K. Mogensen, 2012: Impact of the sea surface temperature forcing on hindcasts of Madden–Julian oscillation events during the ECMWF model. Ocean Sci., 8, 10711084, doi:10.5194/os-8-1071-2012.

    • Search Google Scholar
    • Export Citation
  • Donald, A., H. Meinke, B. Power, A. de H. N. Maia, M. C. Wheeler, N. White, R. C. Stone, and J. Ribbe, 2006: Near-global impact of the Madden-Julian Oscillation on rainfall. Geophys. Res. Lett., 33, L09704, doi:10.1029/2005GL025155.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: Air-sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44, 23242340, doi:10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implication for intraseasonal oscillations. J. Atmos. Sci., 54, 23732386, doi:10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 1999: On the role of longwave radiation and boundary layer thermodynamics on forcing tropical surface winds. J. Climate, 12, 10491069, doi:10.1175/1520-0442(1999)012<1049:TROLRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: Differences of boreal-summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17, 12631271, doi:10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden–Julian oscillation: GCM experiments. J. Climate, 22, 39393959, doi:10.1175/2009JCLI2610.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753, doi:10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, and L. Tao, 2006: Satellite data revealed the 3-D moisture structure of tropical intraseasonal oscillation and its coupling with underlying ocean. Geophys. Res. Lett., 33, L03705, doi:10.1029/2005GL025074.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere–ocean interaction on the predictability of monsoon intraseasonal oscillation. J. Atmos. Sci., 64, 157174, doi:10.1175/JAS3830.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, Q. Bao, P. Liu, and B. Yang, 2008a: Experimental dynamical forecast of an MJO event observed during TOGA-COARE period. Atmos. Oceanic Sci. Lett., 1, 2428.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Yang, Q. Bao, and B. Wang, 2008b: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577597, doi:10.1175/2007MWR2172.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, J.-Y. Lee, W. Q. Wang, and L. Gao, 2011: Sensitivity of dynamical intraseasonal prediction skills to different initial conditions. Mon. Wea. Rev., 139, 25722592, doi:10.1175/2011MWR3584.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, B. Wang, W. Q. Wang, and F. Vitart, 2013a: Intra-seasonal forecasting of the Asian summer monsoon in four operational and research models. J. Climate, 26, 41864203, doi:10.1175/JCLI-D-12-00252.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, P.-C. Hsu, H. Taniguchi, B. Wang, W. Q. Wang, and S. Weaver, 2013b: Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dyn., 41, 10671081, doi:10.1007/s00382-013-1859-9.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck, A. Vintzileos, and C. D. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Han, W. Q., D. L. Yuan, W. T. Liu, and D. J. Hakides, 2007: Intraseasonal variability of Indian Ocean sea surface temperature during boreal winter: Madden-Julian Oscillation versus submonthly forcing and processes. J. Geophys. Res., 112, C04001, doi:10.1029/2006JC003791.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2000: Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J. Atmos. Sci., 57, 39393952, doi:10.1175/1520-0469(2001)058<3939:IOASCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirst, A., and K.-M. Lau, 1990: Intraseasonal and interannual oscillations in coupled ocean–atmosphere models. J. Climate, 3, 713725, doi:10.1175/1520-0442(1990)003<0713:IAIOIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573–584, doi:10.1002/qj.1991.

    • Search Google Scholar
    • Export Citation
  • Hsu, H. H., and M. Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden–Julian Oscillation. J. Climate, 18, 795809, doi:10.1175/JCLI-3292.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, doi:10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Hung, M., J. Lin, W. Q. Wang, D. Kim, T. Shinoda, and S. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and G. S. Young, 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40, 21382147, doi:10.1175/1520-0469(1983)040<2138:HAMBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden and Julian Oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9, 30863104, doi:10.1175/1520-0442(1996)009<3086:TROLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanemaru, K., and H. Masunaga, 2014: The potential roles of background surface wind in the SST variability associated with intraseasonal oscillations. J. Climate, 27, 70537068, doi:10.1175/JCLI-D-13-00774.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Spatiotemporal wavelet transform and the multiscale behavior of the Madden–Julian oscillation. J. Climate, 23, 38143834, doi:10.1175/2010JCLI2693.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., C. D. Hoyos, P. J. Webster, and I. S. Kang, 2008: Sensitivity of MJO simulation and predictability to sea surface temperature variability. J. Climate, 21, 53045317, doi:10.1175/2008JCLI2078.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., C. D. Hoyos, P. J. Webster, and I. S. Kang, 2010: Ocean-atmosphere coupling and the boreal winter MJO. Climate Dyn., 35, 771784, doi:10.1007/s00382-009-0612-x.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System (GDAS). Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., D. K. Oosterhof, and A. V. Mehta, 1988: Air–sea interaction on the time scale of 30 to 50 days. J. Atmos. Sci., 45, 13041322, doi:10.1175/1520-0469(1988)045<1304:AIOTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., M. Subramaniam, G. Daughenbaugh, D. Oosterhof, and J. H. Xue, 1992: One-month forecasts of wet and dry spells of the monsoon. Mon. Wea. Rev., 120, 11911223, doi:10.1175/1520-0493(1992)120<1191:OMFOWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z. M., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, doi:10.1175/2007JAS2444.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, H., K. Yoneyama, and H. Jun-Ichi, 2012: Contribution of tropical cyclone for the preconditioning of the Madden-Julian Oscillation during CINDY2011. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A13A-0213.

  • Lau, K. M., and L. Peng, 1987: Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and S. Shen, 1988: On the dynamics of intraseasonal oscillations and ENSO. J. Atmos. Sci., 45, 17811797, doi:10.1175/1520-0469(1988)045<1781:OTDOIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and D. E. Waliser, Eds., 2011: Intraseasonal Variability of the Atmosphere–Ocean Climate System. 2nd ed. Springer, 613 pp.

  • Lau, N.-C., I. M. Held, and J. D. Neelin, 1988: The Madden–Julian Oscillation in an idealized GCM model. J. Atmos. Sci., 45, 38103832, doi:10.1175/1520-0469(1988)045<3810:TMJOIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., F. Tam, X. Fu, T.-J. Zhou, and W.-J. Zhu, 2008: Causes of the intraseasonal SST variability in the tropical Indian Ocean. Atmos. Oceanic Sci. Lett., 1, 1823.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian Oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, doi:10.1175/2008MWR2459.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 33673383, doi:10.1175/1520-0469(1996)053<3367:HMAROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, P., and Coauthors, 2009: An MJO simulated by the NICAM at 14- and 7-km resolutions. Mon. Wea. Rev., 137, 32543268, doi:10.1175/2009MWR2965.1.

    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386, doi:10.1175/JCLI-3212.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhabitation, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., O. Alves, and H. H. Hendon, 2008: An enhanced moisture convergence–evaporation feedback mechanism for MJO air–sea interaction. J. Atmos. Sci., 65, 970986, doi:10.1175/2007JAS2313.1.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., and H. Endo, 2011: Verification of medium-range MJO forecasts with TIGGE. Geophys. Res. Lett., 38, L11801, doi:10.1029/2011GL047480.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, doi:10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. E. Shapiro, G. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC Virtual Global Field Campaign. Bull. Amer. Meteor. Soc., 93, 11711187, doi:10.1175/BAMS-D-11-00233.1.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, doi:10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and Coauthors, 2014: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 11851199, doi:10.1175/BAMS-D-12-00225.1.

    • Search Google Scholar
    • Export Citation
  • National Academy of Sciences, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Research Council, 192 pp.

  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, doi:10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Tech. Memo. 206, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 76 pp.

  • Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470, doi:10.1175/BAMS-89-4-459.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., and B. P. Kirtman, 2008: The impact of air–sea interactions on the simulation of tropical intraseasonal variability. J. Climate, 21, 66166635, doi:10.1175/2008JCLI2180.1.

    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., H. H. Hendon, M. C. Wheeler, and O. Alves, 2011: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649–661, doi:10.1007/s00382-010-0754-x.

    • Search Google Scholar
    • Export Citation
  • Richards, K. J., M. E. Inall, and N. C. Wells, 1995: The diurnal mixed layer and upper ocean heat budget in the western equatorial Pacific. J. Geophys. Res., 100, 68656879, doi:10.1029/94JC03228.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institute for Meteorology Rep. 218, 90 pp.

  • Roundy, P. E., 2012: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 69, 20972106, doi:10.1175/JAS-D-12-03.1.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., 2014: Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region—and its quantification. Climate Dyn., 43, 1159–1169, doi:10.1007/s00382-013-1881-y.

    • Search Google Scholar
    • Export Citation
  • Rui, H. L., and B. Wang, 1990: Development characteristics and dynamical structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, doi:10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., H. Tomita, H. Miura, S. Iga, and T. Nasuno, 2005: Development of a global cloud resolving model—A multi-scale structure of tropical convections. J. Earth Simul., 3, 1119.

    • Search Google Scholar
    • Export Citation
  • Seo, K. H., W. Q. Wang, J. Gottschalk, Q. Zhang, J. K. E. Schemm, W. R. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, doi:10.1175/2008JCLI2421.1.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11, 16851702, doi:10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., R. Hagedorn, B. Hoskins, J. Kinter, J. Marotzke, M. Miller, T. N. Palmer, and J. Slingo, 2009: Strategies—Revolution in climate prediction: A declaration at the world modeling summit for climate prediction. Bull. Amer. Meteor. Soc., 90, 175178, doi:10.1175/2008BAMS2759.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., E. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst.,2 (2), doi:10.3894/JAMES.2010.2.2.

  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. S. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and the tropical sea surface temperatures. J. Climate, 17, 22132224, doi:10.1175/1520-0442(2004)017<2213:OEFTMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, doi:10.1175/JCLI-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Tao, L., X. H. Fu, and W. S. Lu, 2009: Moisture structure of the quasi-biweekly mode revealed by AIRS in western Pacific. Adv. Atmos. Sci., 26, 513522, doi:10.1007/s00376-009-0513-2.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden-Julian Oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, doi:10.1002/qj.623.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., S. Woolnough, M. A. Balmaseda, and A. M. Tompkins, 2007: Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135, 27002715, doi:10.1175/MWR3415.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2005: Predictability of tropical intraseasonal variability. The Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 702 pp.

  • Waliser, D. E., K.-M. Lau, and J.-H. Kim, 1999: The influence of coupled sea surface temperature on the Madden–Julian Oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358, doi:10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., W. Stern, S. Schubert, and K. M. Lau, 2003: Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 129, 28972925, doi:10.1256/qj.02.51.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988a: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin waves. J. Atmos. Sci., 45, 20512065, doi:10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988b: Comments on “An air–sea interaction model of intraseasonal oscillation in the tropics.” J. Atmos. Sci., 45, 35213525, doi:10.1175/1520-0469(1988)045<3521:COAIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2011: MJO theories. Intraseasonal Variability of the Atmosphere-Ocean Climate System, 2nd ed. K. M. Lau and D. E. Waliser, Eds., Springer, 307–360.

  • Wang, B., and H. Rui, 1990a: Synoptic climatology of transient tropical intraseasonal convective anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, doi:10.1007/BF01026810.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990b: Dynamics of coupled moist Kelvin–Rossby waves on an equatorial beta-plane. J. Atmos. Sci., 47, 397413, doi:10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interactions with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400, doi:10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian Oscillation. J. Climate, 11, 21162135, doi:10.1175/1520-0442-11.8.2116.

    • Search Google Scholar
    • Export Citation
  • Wang, B., T. Li, and P. Chang, 1995: An intermediate model of the tropical Pacific Ocean. J. Phys. Oceanogr., 25, 15991616, doi:10.1175/1520-0485(1995)025<1599:AIMOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J. D., W. Q. Wang, X. Fu, and K.-H. Seo, 2012: Tropical intraseasonal rainfall variability in the CFSR. Climate Dyn., 38, 2191–2207, doi:0.1007/s00382-011-1087-0.

    • Search Google Scholar
    • Export Citation
  • Wang, W. Q., and K.-H. Seo, 2009: The Madden-Julian Oscillation in NCEP coupled model simulation. Terr. Atmos. Oceanic Sci.,20, 713–725, doi:10.3319/TAO.2008.09.17.01(A).

  • Watterson, I. G., 2002: The sensitivity of subannual and intraseasonal tropical variability to model ocean mixed layer depth. J. Geophys. Res., 107, 4020, doi:10.1029/2001JD000671.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., W. Q. Wang, M. Y. Chen, and A. Kumar, 2011: Representation of MJO variability in the NCEP Climate Forecast System. J. Climate, 24, 46764694, doi:10.1175/2011JCLI4188.1.