A Year-Long Large-Eddy Simulation of the Weather over Cabauw: An Overview

Jerôme Schalkwijk Delft University of Technology, Delft, Netherlands

Search for other papers by Jerôme Schalkwijk in
Current site
Google Scholar
PubMed
Close
,
Harmen J. J. Jonker Delft University of Technology, Delft, Netherlands

Search for other papers by Harmen J. J. Jonker in
Current site
Google Scholar
PubMed
Close
,
A. Pier Siebesma Royal Netherlands Meteorological Institute, De Bilt, and Delft University of Technology, Delft, Netherlands

Search for other papers by A. Pier Siebesma in
Current site
Google Scholar
PubMed
Close
, and
Fred C. Bosveld Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Fred C. Bosveld in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Results are presented of two large-eddy simulation (LES) runs of the entire year 2012 centered at the Cabauw observational supersite in the Netherlands. The LES is coupled to a regional weather model that provides the large-scale information. The simulations provide three-dimensional continuous time series of LES-generated turbulence and clouds, which can be compared in detail to the extensive observational dataset of Cabauw. The LES dataset is available from the authors on request.

This type of LES setup has a number of advantages. First, it can provide a more statistical approach to the study of turbulent atmospheric flow than the more common case studies, since a diverse but representative set of conditions is covered, including numerous transitions. This has advantages in the design and evaluation of parameterizations. Second, the setup can provide valuable information on the quality of the LES model when applied to such a wide range of conditions. Last, it also provides the possibility to emulate observation techniques. This might help detect limitations and potential problems of a variety of measurement techniques.

The LES runs are validated through a comparison with observations from the observational supersite and with results from the “parent” large-scale model. The long time series that are generated, in combination with information on the spatial structure, provide a novel opportunity to study time scales ranging from seconds to seasons. This facilitates a study of the power spectrum of horizontal and vertical wind speed variance to identify the dominant variance-containing time scales.

Corresponding author address: Jerôme Schalkwijk, Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands. E-mail: j.schalkwijk@tudelft.nl

Abstract

Results are presented of two large-eddy simulation (LES) runs of the entire year 2012 centered at the Cabauw observational supersite in the Netherlands. The LES is coupled to a regional weather model that provides the large-scale information. The simulations provide three-dimensional continuous time series of LES-generated turbulence and clouds, which can be compared in detail to the extensive observational dataset of Cabauw. The LES dataset is available from the authors on request.

This type of LES setup has a number of advantages. First, it can provide a more statistical approach to the study of turbulent atmospheric flow than the more common case studies, since a diverse but representative set of conditions is covered, including numerous transitions. This has advantages in the design and evaluation of parameterizations. Second, the setup can provide valuable information on the quality of the LES model when applied to such a wide range of conditions. Last, it also provides the possibility to emulate observation techniques. This might help detect limitations and potential problems of a variety of measurement techniques.

The LES runs are validated through a comparison with observations from the observational supersite and with results from the “parent” large-scale model. The long time series that are generated, in combination with information on the spatial structure, provide a novel opportunity to study time scales ranging from seconds to seasons. This facilitates a study of the power spectrum of horizontal and vertical wind speed variance to identify the dominant variance-containing time scales.

Corresponding author address: Jerôme Schalkwijk, Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands. E-mail: j.schalkwijk@tudelft.nl
Save
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and F. C. Bosveld, 1997: Cabauw data for the validation of land surface parameterization schemes. J. Climate, 10, 11721193, doi:10.1175/1520-0442(1997)010<1172:CDFTVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, doi:10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., and Coauthors, 2014: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157187, doi:10.1007/s10546-014-9919-1.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T. H., and Coauthors, 1997: Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. J. Climate, 10, 11941215, doi:10.1175/1520-0442(1997)010<1194:CERFTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., V. M. Canuto, and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 15501565, doi:10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and Coauthors, 2004: The Baltex Bridge Campaign: An integrated approach for a better understanding of clouds. Bull. Amer. Meteor. Soc., 85, 15651584, doi:10.1175/BAMS-85-10-1565.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. O. Pinto, T. Benner, and M. Tschudi, 1997: Evolution of the cloudy boundary layer during the autumnal freezing of the Beaufort Sea. J. Geophys. Res., 102, 13 85113 860, doi:10.1029/96JD03089.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115, doi:10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Del Álamo, J. C., and J. Jiminéz, 2009: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech., 640, 5–26, doi:10.1017/S0022112009991029.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372, doi:10.1007/BF00240838.

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298, doi:10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996: Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 36843709, doi:10.1175/1520-0469(1996)053<3684:CRMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, doi:10.1175/2007JAS2322.1.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and Coauthors, 2010: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev., 3, 415444, doi:10.5194/gmd-3-415-2010.

    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., M. Froidevaux, V. Simeonov, N. Vercauteren, C. Barry, and M. B. Parlange, 2012: The effect of scale on the applicability of Taylor’s frozen turbulence hypothesis in the atmospheric boundary layer. Bound.-Layer Meteor., 143, 379391, doi:10.1007/s10546-012-9701-1.

    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101, 4455, doi:10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1 (4), doi:10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., and M. Vachharajani, 2008: GPU acceleration of numerical weather prediction. Parallel Process. Lett., 18, 531, doi:10.1142/S0129626408003557.

    • Search Google Scholar
    • Export Citation
  • Moin, P., 2009: Revisiting Taylor’s hypothesis. J. Fluid Mech., 640, 1–4, doi:10.1017/S0022112009992126.

  • Monna, W. A. A., and J. G. Van der Vliet, 1987: Facilities for research and weather observations on the 213 m tower at Cabauw and at remote locations. Royal Netherlands Meteorological Institute Tech. Rep., 27 pp.

  • Neggers, R. A. J., A. P. Siebesma, and T. Heus, 2012: Continuous single-column model evaluation at a permanent meteorological supersite. Bull. Amer. Meteor. Soc., 93, 13891400, doi:10.1175/BAMS-D-11-00162.1.

    • Search Google Scholar
    • Export Citation
  • Russchenberg, H., and Coauthors, 2005: Ground-based atmospheric remote sensing in the Netherlands: European outlook. IEICE Trans. Commun.,E88-B, 2252–2258.

    • Search Google Scholar
    • Export Citation
  • Schalkwijk, J., E. Griffith, H. Post, and H. J. J. Jonker, 2012: High performance simulations of turbulent clouds on a desktop PC: Exploiting the GPU. Bull. Amer. Meteor. Soc., 93, 307314, doi:10.1175/BAMS-D-11-00059.1.

    • Search Google Scholar
    • Export Citation
  • Schalkwijk, J., H. J. J. Jonker, and A. P. Siebesma, 2013: Simple solutions to steady-state cumulus regimes in the convective boundary layer. J. Atmos. Sci., 70, 36563672, doi:10.1175/JAS-D-12-0312.1.

    • Search Google Scholar
    • Export Citation
  • Schalkwijk, J., H. J. J. Jonker, A. P. Siebesma, and E. van Meijgaard, 2015: Weather forecasting using GPU-based large-eddy simulations. Bull. Amer. Meteor. Soc., in press.

  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, doi:10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soong, S.-T., and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 20352050, doi:10.1175/1520-0469(1980)037<2035:ROTCTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891, doi:10.1175/1520-0469(2001)058<1870:SOTWCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for nonconvective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690, doi:10.1002/qj.49710444110.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, A164, 476490, doi:10.1098/rspa.1938.0032.

  • Tomita, H., 2001: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86A, 121142, doi:10.2151/jmsj.86A.121.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., P. Viterbo, A. C. M. Beljaars, and A. K. Betts, 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo. 295, 43 pp.

  • van der Hoven, I., 1957: Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J. Meteor., 14, 160164, doi:10.1175/1520-0469(1957)014<0160:PSOHWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Driel, R., and H. J. J. Jonker, 2011: Convective boundary layers driven by nonstationary surface heat fluxes. J. Atmos. Sci., 68, 727738, doi:10.1175/2010JAS3643.1.

    • Search Google Scholar
    • Export Citation
  • van Meijgaard, E., L. H. van Ulft, W. J. van de Berg, F. C. Bosveld, B. J. J. M. van den Hurk, G. Lenderink, and A. P. Siebesma, 2008: The KNMI regional atmospheric climate model RACMO version 2.1. KNMI Tech. Rep. 320, 43 pp.

  • van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 3969, doi:10.1007/BF00122486.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and A. C. M. Beljaars, 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 27162748, doi:10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the terra incognita. J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1510 351 36
PDF Downloads 1001 252 16