Are Special Processes at Work in the Rapid Intensification of Tropical Cyclones?

Roman Kowch Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Roman Kowch in
Current site
Google Scholar
PubMed
Close
and
Kerry Emanuel Lorenz Center, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Kerry Emanuel in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Probably not. Frequency distributions of intensification and dissipation developed from synthetic open-ocean tropical cyclone data show no evidence of significant departures from exponential distributions, though there is some evidence for a fat tail of dissipation rates. This suggests that no special factors govern high intensification rates and that tropical cyclone intensification and dissipation are controlled by statistically random environmental and internal variability.

Corresponding author address: Kerry Emanuel, MIT, Rm. 54-1814, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: emanuel@mit.edu

Abstract

Probably not. Frequency distributions of intensification and dissipation developed from synthetic open-ocean tropical cyclone data show no evidence of significant departures from exponential distributions, though there is some evidence for a fat tail of dissipation rates. This suggests that no special factors govern high intensification rates and that tropical cyclone intensification and dissipation are controlled by statistically random environmental and internal variability.

Corresponding author address: Kerry Emanuel, MIT, Rm. 54-1814, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: emanuel@mit.edu
Save
  • Braun, and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345–363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843–858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347–367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220–241, doi:10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., D. P. Brown, J. Courtney, G. M. Gallina, and J. L. Beven II, 2010: An evaluation of Dvorak technique-based tropical cyclone intensity estimates. Wea. Forecasting, 25, 1362–1379, doi:10.1175/2010WAF2222375.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kowch, R. S., 2013: Diurnal analysis of intensity trends in Atlantic tropical cyclones. M.S. thesis, Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 88 pp.

  • Landsea, C., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 1703–1714, doi:10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, D. G., 1992: The beta and advection model for hurricane track forecasting. NOAA Tech. Memo. NWS NMC 70, 89 pp.

  • Schreck, C. J. I., K. R. Knapp, and J. P. Kossin, 2014: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 3881–3899, doi:10.1175/MWR-D-14-00021.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 1195–1210, doi:10.1175/BAMS-87-9-1195.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2075 841 485
PDF Downloads 927 164 11