Idealized Study of Ocean Impacts on Tropical Cyclone Intensity Forecasts

G. R. Halliwell Jr. Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by G. R. Halliwell Jr. in
Current site
Google Scholar
PubMed
Close
,
S. Gopalakrishnan Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by S. Gopalakrishnan in
Current site
Google Scholar
PubMed
Close
,
F. Marks Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by F. Marks in
Current site
Google Scholar
PubMed
Close
, and
D. Willey Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by D. Willey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Idealized coupled tropical cyclone (TC) simulations are conducted to isolate ocean impacts on intensity forecasts. A one-dimensional ocean model is embedded into the Hurricane Weather Research and Forecasting (HWRF) mesoscale atmospheric forecast model. By inserting an initial vortex into a horizontally uniform atmosphere above a horizontally uniform ocean, the SST cooling rate becomes the dominant large-scale process controlling intensity evolution. Westward storm translation is introduced by bodily advecting ocean fields toward the east. The ocean model produces a realistic cold wake structure allowing the sensitivity of quasi-equilibrium intensity to storm (translation speed, size) and ocean (heat potential) parameters to be quantified. The atmosphere provides feedback through adjustments in 10-m temperature and humidity that reduce SST cooling impact on quasi-equilibrium intensity by up to 40%. When storms encounter an oceanic region with different heat potential, enthalpy flux adjustment is governed primarily by changes in air–sea temperature and humidity differences that respond within 2–4 h in the inner-core region, and secondarily by wind speed changes occurring over a time interval up to 18 h after the transition. Atmospheric feedback always acts to limit the change in enthalpy flux and intensity through adjustments in 10-m temperature and humidity. Intensity change is asymmetric, with a substantially smaller increase for storms encountering larger heat potential compared to the decrease for storms encountering smaller potential. The smaller increase results initially from the smaller wind speed present at the transition time plus stronger limiting atmospheric feedback. The smaller wind speed increase resulting from these two factors further enhances the asymmetry.

Corresponding author address: George Halliwell, NOAA/AOML/PhOD, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: george.halliwell@noaa.gov

Abstract

Idealized coupled tropical cyclone (TC) simulations are conducted to isolate ocean impacts on intensity forecasts. A one-dimensional ocean model is embedded into the Hurricane Weather Research and Forecasting (HWRF) mesoscale atmospheric forecast model. By inserting an initial vortex into a horizontally uniform atmosphere above a horizontally uniform ocean, the SST cooling rate becomes the dominant large-scale process controlling intensity evolution. Westward storm translation is introduced by bodily advecting ocean fields toward the east. The ocean model produces a realistic cold wake structure allowing the sensitivity of quasi-equilibrium intensity to storm (translation speed, size) and ocean (heat potential) parameters to be quantified. The atmosphere provides feedback through adjustments in 10-m temperature and humidity that reduce SST cooling impact on quasi-equilibrium intensity by up to 40%. When storms encounter an oceanic region with different heat potential, enthalpy flux adjustment is governed primarily by changes in air–sea temperature and humidity differences that respond within 2–4 h in the inner-core region, and secondarily by wind speed changes occurring over a time interval up to 18 h after the transition. Atmospheric feedback always acts to limit the change in enthalpy flux and intensity through adjustments in 10-m temperature and humidity. Intensity change is asymmetric, with a substantially smaller increase for storms encountering larger heat potential compared to the decrease for storms encountering smaller potential. The smaller increase results initially from the smaller wind speed present at the transition time plus stronger limiting atmospheric feedback. The smaller wind speed increase resulting from these two factors further enhances the asymmetry.

Corresponding author address: George Halliwell, NOAA/AOML/PhOD, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: george.halliwell@noaa.gov
Save
  • Bao, J.-W., S. G. Gopalakrishnan, S. A. Michelson, F. D. Marks, and M. T. Montgomery, 2012: Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships. Mon. Wea. Rev., 140, 32783299, doi:10.1175/MWR-D-11-00332.1.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, doi:10.1016/S1463-5003(01)00012-9.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W.-J., 1979: The response of an axisymmetric model tropical cyclone to local variations of sea surface temperature. Mon. Wea. Rev., 107, 662666, doi:10.1175/1520-0493(1979)107<0662:TROAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, R. Baraille, and R. Bleck, 2007: The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst., 65, 6083, doi:10.1016/j.jmarsys.2005.09.016.

    • Search Google Scholar
    • Export Citation
  • Chiang, T.-L., C.-R. Wu, and L.-Y. Oey, 2011: Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr., 41, 221233, doi:10.1175/2010JPO4518.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., 2015: The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Mon. Wea. Rev., 143, 904913, doi:10.1175/MWR-D-13-00380.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, doi:10.1175//2562.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., E. A. Kalina, J. A. Zhang, and E. W. Uhlhorn, 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, doi:10.1175/MWR-D-12-00070.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R., T. Fraim, and R. Trapnell Jr., 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 11531162, doi:10.1029/JC081i006p01153.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, doi:10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental controls of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and J. A. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Trans. Amer. Geophys. Union, 84, 573578, doi:10.1029/2003EO510001.

    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and Coauthors, 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190197, doi:10.5670/oceanog.2009.78.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., X. Zhang, J.-W. Bao, K.-S. Yeh, and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, doi:10.1175/2010MWR3535.1.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, doi:10.1175/JAS-D-11-0340.1.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1984: On the response of the ocean to a moving storm: Parameters and scales. J. Phys. Oceanogr., 14, 5978, doi:10.1175/1520-0485(1984)014<0059:OTROTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1985: On the role played by upwelling of water in lowering sea surface temperatures during the passage of a storm. J. Geophys. Res., 90, 11 75111 755, doi:10.1029/JC090iC06p11751.

    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., Jr., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the Hybrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, doi:10.1016/j.ocemod.2003.10.002.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 13471365, doi:10.1175/1520-0493(2000)128<1347:TIBHOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ito, K., T. Kuroda, K. Saito, and A. Wada, 2015: Forecasting a large number of tropical cyclone intensities around Japan using a high-resolution atmosphere–ocean coupled model. Wea. Forecasting, doi:10.1175/WAF-D-14-00034.1, in press.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscale features on the tropical cyclone–induced mixed layer response. J. Phys. Oceanogr., 33, 649676, doi:10.1175/1520-0485(2003)33<649:TROOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3-D oceanic mixed-layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, doi:10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale ocean eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, doi:10.1175/2009MWR2849.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, doi:10.1175/2010JPO4309.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., C. Lozano, V. Tallapragada, D. Iredell, D. Sheinin, H. L. Tolman, V. M. Gerald, and J. Sims, 2014: Performance of ocean simulations in the coupled HWRF-HYCOM model. J. Atmos. Oceanic Technol., 31, 545559, doi:10.1175/JTECH-D-13-00013.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, doi:10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, K. A. Emmanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, doi:10.1175/MWR3005.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, doi:10.1175/2008MWR2277.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009a: Warm ocean anomaly, air–sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi:10.1029/2008GL035815.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009b: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, doi:10.1175/2009MWR2713.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., G. A. Goni, J. A. Knaff, C. Forbes, and M. M. Ali, 2013: Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards, 66, 14811500, doi:10.1007/s11069-012-0214-5.

    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, doi:10.1175/2010JCLI3763.1.

    • Search Google Scholar
    • Export Citation
  • Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent category 5 hurricanes. Wea. Forecasting, 23, 316, doi:10.1175/2007WAF2006111.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801, doi:10.1029/2011GL050765.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteor., 15, 184195, doi:10.1175/1520-0469(1958)015<0184:OTMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 2009: Metrics of hurricane–ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368, doi:10.5194/os-5-351-2009.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scharroo, R., W. H. Smith, and J. L. Lillibridge, 2005: Satellite altimetry and the intensification of Hurricane Katrina. Eos, Trans. Amer. Geophys. Union, 86, 366367, doi:10.1029/2005EO400004.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., 2009: Upper ocean structure: Response to strong forcing events. Encyclopedia of Ocean Sciences, 2nd ed. J. Steele et al., Eds., Elsevier, 192–210, doi:10.1016/B978-012374473-9.00628-7.

  • Shay, L. K., and J. K. Brewster, 2010: Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon. Wea. Rev., 138, 21102131, doi:10.1175/2010MWR3189.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 27720 248, doi:10.1029/92JC01586.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, D., R. Gautam, G. Cervone, Z. Boyeyi, and M. Kaptos, 2006: Comment on “Satellite altimetry and the intensification of Hurricane Katrina.” Eos, Trans. Amer. Geophys. Union, 87, 89, doi:10.1029/2006EO080006.

    • Search Google Scholar
    • Export Citation
  • Suzuki, S., H. Niino, and R. Kimura, 2011: The mechanism of upper-oceanic vertical motions forced by a moving typhoon. Fluid Dyn. Res., 43, 025504, doi:10.1088/0169-5983/43/2/025504.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, J. Vialard, G. Madec, N. C. Jourdain, and S. Masson, 2012: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C05023, doi:10.1029/2011JC007705.

    • Search Google Scholar
    • Export Citation
  • Wada, A., and N. Usui, 2007: Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. J. Oceanogr., 63, 427447, doi:10.1007/s10872-007-0039-0.

    • Search Google Scholar
    • Export Citation
  • Walker, N., R. R. Leben, and S. Balasubramanian, 2005: Hurricane forced upwelling and chlorophyll a enhancement within cold core cyclones in the Gulf of Mexico. Geophys. Res. Lett.,32, L18610, doi:10.1029/2005GL023716.

  • Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, doi:10.1175/JAS4051.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., Y.-L. Chang, L.-Y. Oey, C.-W. J. Chang, and Y.-C. Hsin, 2008: Air–sea interaction between Tropical Cyclone Nari and Kuroshio. Geophys. Res. Lett., 35, L12605, doi:10.1029/2008GL033942.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, doi:10.1175/2010JAS3387.1.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled ocean–hurricane model forecasts. Mon. Wea. Rev., 137, 44104419, doi:10.1175/2009MWR2863.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., T. Quirino, K.-S. Yeh, S. Gopalakrishnan, F. Marks, S. Goldenberg, and S. Aberson, 2011: HWRFx: Improving hurricane forecasts with high-resolution modeling. Comput. Sci. Eng., 13, 1321, doi:10.1109/MCSE.2010.121.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 670 180 19
PDF Downloads 386 114 15