A Second-Order Exact Ensemble Square Root Filter for Nonlinear Data Assimilation

Julian Tödter Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt, Germany

Search for other papers by Julian Tödter in
Current site
Google Scholar
PubMed
Close
and
Bodo Ahrens Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt, Germany

Search for other papers by Bodo Ahrens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ensemble Kalman filter (EnKF) and its deterministic variants, mostly square root filters such as the ensemble transform Kalman filter (ETKF), represent a popular alternative to variational data assimilation schemes and are applied in a wide range of operational and research activities. Their forecast step employs an ensemble integration that fully respects the nonlinear nature of the analyzed system. In the analysis step, they implicitly assume the prior state and observation errors to be Gaussian. Consequently, in nonlinear systems, the analysis mean and covariance are biased, and these filters remain suboptimal. In contrast, the fully nonlinear, non-Gaussian particle filter (PF) only relies on Bayes’s theorem, which guarantees an exact asymptotic behavior, but because of the so-called curse of dimensionality it is exposed to weight collapse. Here, it is shown how to obtain a new analysis ensemble whose mean and covariance exactly match the Bayesian estimates. This is achieved by a deterministic matrix square root transformation of the forecast ensemble, and subsequently a suitable random rotation that significantly contributes to filter stability while preserving the required second-order statistics. The properties and performance of the proposed algorithm are further investigated via a set of experiments. They indicate that such a filter formulation can increase the analysis quality, even for relatively small ensemble sizes, compared to other ensemble filters in nonlinear, non-Gaussian scenarios. Localization enhances the potential applicability of this PF-inspired scheme in larger-dimensional systems. The proposed algorithm, which is fairly easy to implement and computationally efficient, is referred to as the nonlinear ensemble transform filter (NETF).

Corresponding author address: Julian Tödter, IAU, Goethe University, Altenhöferallee 1, 60438 Frankfurt am Main, Frankfurt, Germany. E-mail: toedter@iau.uni-frankfurt.de

Abstract

The ensemble Kalman filter (EnKF) and its deterministic variants, mostly square root filters such as the ensemble transform Kalman filter (ETKF), represent a popular alternative to variational data assimilation schemes and are applied in a wide range of operational and research activities. Their forecast step employs an ensemble integration that fully respects the nonlinear nature of the analyzed system. In the analysis step, they implicitly assume the prior state and observation errors to be Gaussian. Consequently, in nonlinear systems, the analysis mean and covariance are biased, and these filters remain suboptimal. In contrast, the fully nonlinear, non-Gaussian particle filter (PF) only relies on Bayes’s theorem, which guarantees an exact asymptotic behavior, but because of the so-called curse of dimensionality it is exposed to weight collapse. Here, it is shown how to obtain a new analysis ensemble whose mean and covariance exactly match the Bayesian estimates. This is achieved by a deterministic matrix square root transformation of the forecast ensemble, and subsequently a suitable random rotation that significantly contributes to filter stability while preserving the required second-order statistics. The properties and performance of the proposed algorithm are further investigated via a set of experiments. They indicate that such a filter formulation can increase the analysis quality, even for relatively small ensemble sizes, compared to other ensemble filters in nonlinear, non-Gaussian scenarios. Localization enhances the potential applicability of this PF-inspired scheme in larger-dimensional systems. The proposed algorithm, which is fairly easy to implement and computationally efficient, is referred to as the nonlinear ensemble transform filter (NETF).

Corresponding author address: Julian Tödter, IAU, Goethe University, Altenhöferallee 1, 60438 Frankfurt am Main, Frankfurt, Germany. E-mail: toedter@iau.uni-frankfurt.de
Save
  • Ades, M., 2013: Data assimilation in highly nonlinear systems. Ph.D. thesis, University of Reading, Reading, United Kingdom, 178 pp.

  • Ades, M., and P. J. van Leeuwen, 2013: An exploration of the equivalent weights particle filter. Quart. J. Roy. Meteor. Soc., 139, 820840, doi:10.1002/qj.1995.

    • Search Google Scholar
    • Export Citation
  • Ades, M., and P. J. van Leeuwen, 2015: The effect of the equivalent-weights particle filter on dynamical balance in a primitive equation model. Mon. Wea. Rev., 143, 581596, doi:10.1175/MWR-D-14-00050.1.

    • Search Google Scholar
    • Export Citation
  • Ahrens, B., 1999: Variational data assimilation for a Lorenz model using a non-standard genetic algorithm. Meteor. Atmos. Phys., 70, 227238, doi:10.1007/s007030050036.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 41864198, doi:10.1175/2010MWR3253.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atkins, E., M. Morzfeld, and A. J. Chorin, 2013: Implicit particle methods and their connection with variational data assimilation. Mon. Wea. Rev., 141, 17861803, doi:10.1175/MWR-D-12-00145.1.

    • Search Google Scholar
    • Export Citation
  • Bickel, P., B. Li, and T. Bengtsson, 2008: Sharp failure rates for the bootstrap particle filter in high dimensions. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, B. Clarke and S. Ghosal, Eds., Vol. 3, Institute of Mathematical Statistics, 318–329.

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brouwer, A. E., and W. E. Haemers, 2012: Spectra of Graphs. Springer, 263 pp.

  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, doi:10.5194/npg-20-669-2013.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, doi:10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Doucet, A., N. de Freitas, and N. Gordon, 2001: Sequential Monte-Carlo Methods in Practice. Springer-Verlag, 581 pp.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2004: Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn., 54, 539560, doi:10.1007/s10236-004-0099-2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. Springer, 279 pp.

  • Fowler, A., and P. J. van Leeuwen, 2013: Observation impact in data assimilation: The effect of non-Gaussian observation error. Tellus, 65A, 20035, doi:10.3402/tellusa.v65i0.20035.

    • Search Google Scholar
    • Export Citation
  • Frei, M., and H. R. Künsch, 2013a: Bridging the ensemble Kalman and particle filters. Biometrika, 100, 781800, doi:10.1093/biomet/ast020.

    • Search Google Scholar
    • Export Citation
  • Frei, M., and H. R. Künsch, 2013b: Mixture ensemble Kalman filters. Comput. Stat. Data Anal., 58, 127138, doi:10.1016/j.csda.2011.04.013.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. J. Roy. Stat. Soc., 69, 243268, doi:10.1111/j.1467-9868.2007.00587.x.

    • Search Google Scholar
    • Export Citation
  • Gordon, N., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc., F, Radar Signal Process., 140, 107113, doi:10.1049/ip-f-2.1993.0015.

    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., 2014: Assessing the ensemble spread–error relationship. Mon. Wea. Rev., 142, 11251142, doi:10.1175/MWR-D-12-00111.1.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D.-T. Pham, and J. Blum, 2002: A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J. Mar. Syst., 36, 101127, doi:10.1016/S0924-7963(02)00129-X.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D.-T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317334, doi:10.1175/2007MWR1927.1.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., X. Luo, and D.-T. Pham, 2012: Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters. Mon. Wea. Rev., 140, 528542, doi:10.1175/2011MWR3640.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Janjić, T., L. Nerger, A. Albertella, J. Schröter, and S. Skachko, 2011: On domain localization in ensemble-based Kalman filter algorithms. Mon. Wea. Rev., 139, 20462060, doi:10.1175/2011MWR3552.1.

    • Search Google Scholar
    • Export Citation
  • Kalman, R., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, doi:10.1115/1.3662552.

  • Kalnay, E., H. Li, T. Miyoshi, S.-C. Yang, and J. Ballabrera-Poy, 2007: 4D-Var or ensemble Kalman filter? Tellus, 59A, 748773.

  • Kirchgessner, P., L. Nerger, and A. Bunse-Gerstner, 2014: On the choice of an optimal localization radius in ensemble Kalman filter methods. Mon. Wea. Rev., 142, 2165–2175, doi:10.1175/MWR-D-13-00246.1.

    • Search Google Scholar
    • Export Citation
  • Kitagawa, G., 1996: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat., 5, 125.

  • Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 19661981, doi:10.1175/1520-0493(2004)132<1966:IOSADF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leeuwenburgh, O., G. Evensen, and L. Bertino, 2005: The impact of ensemble filter definition on the assimilation of temperature profiles in the tropical Pacific. Quart. J. Roy. Meteor. Soc., 131, 32913300, doi:10.1256/qj.05.90.

    • Search Google Scholar
    • Export Citation
  • Lei, J., and P. Bickel, 2011: A moment matching ensemble filter for nonlinear non-Gaussian data assimilation. Mon. Wea. Rev., 139, 39643973, doi:10.1175/2011MWR3553.1.

    • Search Google Scholar
    • Export Citation
  • Livings, D. M., S. L. Dance, and N. K. Nichols, 2008: Unbiased ensemble square root filters. Physica D, 237, 10211028, doi:10.1016/j.physd.2008.01.005.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212–229, doi:10.1175/MWR-D-14-00195.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • Lorenz, E. N., 1996: Predictability—A problem partly solved. Proc. Seminar on Predictability, Reading, United Kingdom, ECMWF, 1–18.

  • Lorenz, E. N., 2005: Designing chaotic models. J. Atmos. Sci., 62, 15741587, doi:10.1175/JAS3430.1.

  • Luo, X., and I. Hoteit, 2013: Covariance inflation in the ensemble Kalman filter: A residual nudging perspective and some implications. Mon. Wea. Rev., 141, 33603368, doi:10.1175/MWR-D-13-00067.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and I. Hoteit, 2014: Efficient particle filtering through residual nudging. Quart. J. Roy. Meteor. Soc., 140, 557572, doi:10.1002/qj.2152.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 10371056, doi:10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 15191535, doi:10.1175/2010MWR3570.1.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/l48 resolution. Mon. Wea. Rev., 135, 38413861, doi:10.1175/2007MWR1873.1.

    • Search Google Scholar
    • Export Citation
  • Nerger, L., T. Janjić, J. Schröter, and W. Hiller, 2012: A unification of ensemble square root Kalman filters. Mon. Wea. Rev., 140, 23352345, doi:10.1175/MWR-D-11-00102.1.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, doi:10.1111/j.1600-0870.2004.00076.x.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., R. Buizza, R. Hagedorn, A. Lawrence, M. Leutbecher, and L. Smith, 2005: Ensemble prediction: A pedagogical perspective. ECMWF Newsletter, No. 106, ECMWF, Reading, United Kingdom, 1017.

    • Search Google Scholar
    • Export Citation
  • Papadakis, N., E. Mémin, A. Cuzol, and N. Gengembre, 2010: Data assimilation with the weighted ensemble Kalman filter. Tellus, 62A, 673697, doi:0.1111/j.1600-0870.2010.00461.x.

    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 11941207, doi:10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rainwater, S., and B. R. Hunt, 2013: Ensemble data assimilation with an adjusted forecast spread. Tellus, 65A, 19929, doi:10.3402/tellusa.v65i0.19929.

    • Search Google Scholar
    • Export Citation
  • Reich, S., 2013: A nonparametric ensemble transform method for Bayesian inference. SIAM J. Sci. Comput., 35, A2013A2024, doi:10.1137/130907367.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., and P. R. Oke, 2008a: A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters. Tellus, 60A, 361371, doi:10.1111/j.1600-0870.2007.00299.x.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., and P. R. Oke, 2008b: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev., 136, 10421053, doi:10.1175/2007MWR2021.1.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., D. S. Oliver, and L. Bertino, 2012: An iterative EnKF for strongly nonlinear systems. Mon. Wea. Rev., 140, 19882004, doi:10.1175/MWR-D-11-00176.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. Bengtsson, P. Bickel, and J. L. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 46294640, doi:10.1175/2008MWR2529.1.

    • Search Google Scholar
    • Export Citation
  • Stordal, A. S., H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès, 2011: Bridging the ensemble Kalman filter and particle filters: The adaptive Gaussian mixture filter. Comput. Geosci., 15, 293305, doi:10.1007/s10596-010-9207-1.

    • Search Google Scholar
    • Export Citation
  • Sun, A. Y., A. Morris, and S. Mohanty, 2009: Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data. Adv. Water Resour., 32, 280292, doi:10.1016/j.advwatres.2008.11.006.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 13111328, doi:10.1002/qj.49711347812.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tödter, J., and B. Ahrens, 2012: Generalization of the ignorance score: Continuous ranked version and its decomposition. Mon. Wea. Rev., 140, 20052017, doi:10.1175/MWR-D-11-00266.1.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114, doi:10.1175/2009MWR2835.1.

  • van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 19911999, doi:10.1002/qj.699.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., and M. Ades, 2013: Efficient fully nonlinear data assimilation for geophysical fluid dynamics. Comput. Geosci., 55, 1627, doi:10.1016/j.cageo.2012.04.015.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 15901605, doi:10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., E. Kalnay, and B. Hunt, 2012: Handling nonlinearity in an ensemble Kalman filter: Experiments with the three-variable Lorenz model. Mon. Wea. Rev., 140, 26282646, doi:10.1175/MWR-D-11-00313.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 663 192 24
PDF Downloads 482 145 18