Assimilation of Cloud-Top Temperature and Radar Observations of an Idealized Splitting Supercell Using an Observing System Simulation Experiment

Christopher A. Kerr School of Meteorology, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Christopher A. Kerr in
Current site
Google Scholar
PubMed
Close
,
David J. Stensrud NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
, and
Xuguang Wang School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Geostationary Operational Environmental Satellite-R Series will provide cloud-top observations on the convective scale at roughly the same frequency as Doppler radar observations. To evaluate the potential value of cloud-top temperature observations for data assimilation, an imperfect-model observing system simulation experiment is used. Synthetic cloud-top temperature observations from an idealized splitting supercell created using the Weather Research and Forecasting Model are assimilated along with synthetic radar reflectivity and radial velocity using an ensemble Kalman filter. Observations are assimilated every 5 min for 2.5 h with additive noise used to maintain ensemble spread.

Four experiments are conducted to explore the relative value of cloud-top temperature and radar observations. One experiment only assimilates satellite data, another only assimilates radar data, and two more experiments assimilate both radar and satellite observations, but with the observation types assimilated in different order. Results show a rather weak correlation between cloud-top temperature and horizontal winds, whereas larger correlations are found between cloud-top temperature and microphysics variables. However, the assimilation of cloud-top temperature data alone produces a supercell storm in the ensemble, although the resulting ensemble has much larger spread compared to the ensembles of radar inclusive experiments. The addition of radar observations greatly improves the storm structure and reduces the overprediction of storm extent. Results further show that assimilating cloud-top temperature observations in addition to radar data does not lead to an improved forecast. However, assimilating cloud-top temperature can produce reasonable forecasts for areas lacking radar coverage.

Corresponding author address: Christopher A. Kerr, 120 David L. Boren Blvd., Suite 4340B, Norman, OK 73072. E-mail: christopher.kerr@ou.edu

Abstract

The Geostationary Operational Environmental Satellite-R Series will provide cloud-top observations on the convective scale at roughly the same frequency as Doppler radar observations. To evaluate the potential value of cloud-top temperature observations for data assimilation, an imperfect-model observing system simulation experiment is used. Synthetic cloud-top temperature observations from an idealized splitting supercell created using the Weather Research and Forecasting Model are assimilated along with synthetic radar reflectivity and radial velocity using an ensemble Kalman filter. Observations are assimilated every 5 min for 2.5 h with additive noise used to maintain ensemble spread.

Four experiments are conducted to explore the relative value of cloud-top temperature and radar observations. One experiment only assimilates satellite data, another only assimilates radar data, and two more experiments assimilate both radar and satellite observations, but with the observation types assimilated in different order. Results show a rather weak correlation between cloud-top temperature and horizontal winds, whereas larger correlations are found between cloud-top temperature and microphysics variables. However, the assimilation of cloud-top temperature data alone produces a supercell storm in the ensemble, although the resulting ensemble has much larger spread compared to the ensembles of radar inclusive experiments. The addition of radar observations greatly improves the storm structure and reduces the overprediction of storm extent. Results further show that assimilating cloud-top temperature observations in addition to radar data does not lead to an improved forecast. However, assimilating cloud-top temperature can produce reasonable forecasts for areas lacking radar coverage.

Corresponding author address: Christopher A. Kerr, 120 David L. Boren Blvd., Suite 4340B, Norman, OK 73072. E-mail: christopher.kerr@ou.edu
Save
  • Adler, R. F., and R. A. Mack, 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43, 1945–1960, doi:10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 1283–1296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181–202, doi:10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., and G. Kelly, 2001: Observing-system experiments in the ECMWF 4D-Var data assimilation system. Quart. J. Roy. Meteor. Soc., 127, 1469–1488, doi:10.1002/qj.49712757419.

    • Search Google Scholar
    • Export Citation
  • Cintineo, R. M., and D. J. Stensrud, 2013: On the predictability of supercell thunderstorm evolution. J. Atmos. Sci., 70, 1993–2011, doi:10.1175/JAS-D-12-0166.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, L. J. Wicker, E. R. Mansell, and R. L. Tanamachi, 2012: Impact of the environmental low-level wind profile on ensemble forecasts of the 4 May 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones. Mon. Wea. Rev., 140, 696–716, doi:10.1175/MWR-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • de Haan, S., 2013: Assimilation of GNSS ZTD and radar radial velocity for the benefit of very-short-range regional weather forecasts. Quart. J. Roy. Meteor. Soc., 139, 2097–2107, doi:10.1002/qj.2087.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911–927, doi:10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982–2005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duda, J., X. Wang, F. Kong, and M. Xue, 2014: Using varied microphysics to account for uncertainty in warm-season QPF in a convection-allowing ensemble. Mon. Wea. Rev., 142, 2198–2219, doi:10.1175/MWR-D-13-00297.1.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142, doi:10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627, doi:10.1175/MWR2810.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and R. H. Blackmer Jr., 1988: Satellite-observed characteristics of Midwest severe thunderstorm anvils. Mon. Wea. Rev., 116, 2200–2224, doi:10.1175/1520-0493(1988)116<2200:SOCOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, J., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

  • Johnson, A., and X. Wang, 2012: Verification and calibration of neighborhood and object-based probablistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 3054–3077, doi:10.1175/MWR-D-11-00356.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2013: Object-based evaluation of a storm scale ensemble during the 2009 NOAA Hazardous Weather Testbed Spring Experiment. Mon. Wea. Rev., 141, 1079–1098, doi:10.1175/MWR-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2011a: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of object-oriented cluster analysis method for precipitation fields. Mon. Wea. Rev., 139, 3673–3693, doi:10.1175/MWR-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, M. Xue, and F. Kong, 2011b: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble clustering over the whole experiment period. Mon. Wea. Rev., 139, 3694–3710, doi:10.1175/MWR-D-11-00016.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and Coauthors, 2014: Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation. Mon. Wea. Rev., 142, 1053–1073, doi:10.1175/MWR-D-13-00204.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. J. Stensrud, P. Minnis, and R. Palikonda, 2013a: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 2272–2289, doi:10.1175/MWR-D-12-00238.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2013b: Assimilation of satellite infrared radiances and Doppler radar observations during a cool season Observing System Simulation Experiment. Mon. Wea. Rev., 141, 3273–3299, doi:10.1175/MWR-D-12-00267.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 1457–1475, doi:10.1175/MWR-D-11-00032.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., E. Kalnay, R. Daley, G. D. Emmitt, and R. Atlas, 1997: Using OSSEs in the design of the future generation of integrated observing systems. Preprints, First Symp. on Integrated Observation Systems, Long Beach, CA, Amer. Meteor. Soc.

  • McCann, D. W., 1983: The Enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887–894, doi:10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NASA, 2013: GOES-R series mission requirements document (MRD). NASA Rep. 410-R-MRD-0070, 130 pp. [Available online at http://www.goes-r.gov/syseng/docs/MRDv315.pdf.]

  • Naylor, J., M. S. Gilmore, R. L. Thompson, R. Edwards, and R. B. Wilhelmson, 2012: Comparison of objective supercell identification techniques using an idealized cloud model. Mon. Wea. Rev., 140, 2090–2102, doi:10.1175/MWR-D-11-00209.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., 2010: Clear and cloudy-sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res., 115, D19207, doi:10.1029/2009JD013759.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., 2012: Assessing the impact of the covariance localization radius when assimilating infrared brightness temperature observations using an ensemble Kalman filter. Mon. Wea. Rev., 140, 543–561, doi:10.1175/MWR-D-11-00084.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148–1164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1984: Mature thunderstorm cloud top structure and dynamics: A three-dimensional numerical simulation study. J. Atmos. Sci., 41, 1551–1570, doi:10.1175/1520-0469(1984)041<1551:MTCTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., and Coauthors, 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 80–96, doi:10.1016/j.atmosres.2010.03.009.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 1258–1260, doi:10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14, 1156–1165, doi:10.1175/1520-0450(1975)014<1156:RRFCIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2013: The impact of covariance localization for radar data on EnKF analyses of a developing MCS: Observing System Simulation Experiments. Mon. Wea. Rev., 141, 3691–3709, doi:10.1175/MWR-D-12-00203.1.

    • Search Google Scholar
    • Export Citation
  • Steadham, R. M., R. A. Brown, and V. T. Wood, 2002: Prospects for faster and denser WSR-88D scanning strategies. Preprints, 18th Int. Conf. on IIPS Interactive Symp. on AWIPS, Orlando, FL, Amer. Meteor. Soc., J3.16. [Available online at https://ams.confex.com/ams/annual2002/techprogram/paper_25318.htm.]

  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 2077–2107, doi:10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-Scale Warn-on-Forecast system. Bull. Amer. Meteor. Soc., 90, 1487–1499, doi:10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364–2388, doi:10.1175/2007MWR2205.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1243–1261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 1485–1490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807, doi:10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., S. L. Mullen, D. J. Stensrud, and H. E. Brooks, 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129, 729–747, doi:10.1175/1520-0493(2001)129<0729:EOASRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmos. Res., 83, 254–262, doi:10.1016/j.atmosres.2005.08.010.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140–1158, doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 1590–1605, doi:10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J. Atmos. Sci., 57, 262–283, doi:10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. J. Stensrud, 2012: Comparison of single-parameter and multiparameter ensembles for assimilation of radar observations using the ensemble Kalman filter. Mon. Wea. Rev., 140, 562–586, doi:10.1175/MWR-D-10-05074.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 3388–3412, doi:10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 123 12
PDF Downloads 273 80 7