Representing Richardson Number Hysteresis in the NWP Boundary Layer

Ron McTaggart-Cowan Numerical Weather Prediction Research Section, Environment Canada, Dorval, Québec, Canada

Search for other papers by Ron McTaggart-Cowan in
Current site
Google Scholar
PubMed
Close
and
Ayrton Zadra Numerical Weather Prediction Research Section, Environment Canada, Dorval, Québec, Canada

Search for other papers by Ayrton Zadra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulence in the planetary boundary layer (PBL) transports heat, momentum, and moisture in eddies that are not resolvable by current NWP systems. Numerical models typically parameterize this process using vertical diffusion operators whose coefficients depend on the intensity of the expected turbulence. The PBL scheme employed in this study uses a one-and-a-half-order closure based on a predictive equation for the turbulent kinetic energy (TKE). For a stably stratified fluid, the growth and decay of TKE is largely controlled by the dynamic stability of the flow as represented by the Richardson number. Although the existence of a critical Richardson number that uniquely separates turbulent and laminar regimes is predicted by linear theory and perturbation analysis, observational evidence and total energy arguments suggest that its value is highly uncertain. This can be explained in part by the apparent presence of turbulence regime-dependent critical values, a property known as Richardson number hysteresis. In this study, a parameterization of Richardson number hysteresis is proposed. The impact of including this effect is evaluated in systems of increasing complexity: a single-column model, a forecast case study, and a full assimilation cycle. It is shown that accounting for a hysteretic loop in the TKE equation improves guidance for a canonical freezing rain event by reducing the diffusive elimination of the warm nose aloft, thus improving the model’s representation of PBL profiles. Systematic enhancements in predictive skill further suggest that representing Richardson number hysteresis in PBL schemes using higher-order closures has the potential to yield important and physically relevant improvements in guidance quality.

Denotes Open Access content.

Corresponding author address: Ron McTaggart-Cowan, 2121 TransCanada Hwy., Fl. 5, Dorval, QC H9P 1J3, Canada. E-mail: ron.mctaggart-cowan@ec.gc.ca

Abstract

Turbulence in the planetary boundary layer (PBL) transports heat, momentum, and moisture in eddies that are not resolvable by current NWP systems. Numerical models typically parameterize this process using vertical diffusion operators whose coefficients depend on the intensity of the expected turbulence. The PBL scheme employed in this study uses a one-and-a-half-order closure based on a predictive equation for the turbulent kinetic energy (TKE). For a stably stratified fluid, the growth and decay of TKE is largely controlled by the dynamic stability of the flow as represented by the Richardson number. Although the existence of a critical Richardson number that uniquely separates turbulent and laminar regimes is predicted by linear theory and perturbation analysis, observational evidence and total energy arguments suggest that its value is highly uncertain. This can be explained in part by the apparent presence of turbulence regime-dependent critical values, a property known as Richardson number hysteresis. In this study, a parameterization of Richardson number hysteresis is proposed. The impact of including this effect is evaluated in systems of increasing complexity: a single-column model, a forecast case study, and a full assimilation cycle. It is shown that accounting for a hysteretic loop in the TKE equation improves guidance for a canonical freezing rain event by reducing the diffusive elimination of the warm nose aloft, thus improving the model’s representation of PBL profiles. Systematic enhancements in predictive skill further suggest that representing Richardson number hysteresis in PBL schemes using higher-order closures has the potential to yield important and physically relevant improvements in guidance quality.

Denotes Open Access content.

Corresponding author address: Ron McTaggart-Cowan, 2121 TransCanada Hwy., Fl. 5, Dorval, QC H9P 1J3, Canada. E-mail: ron.mctaggart-cowan@ec.gc.ca
Save
  • Abarbanel, H. D. I., D. D. Holm, J. E. Marsden, and T. Ratiu, 1984: Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Phys. Rev. Lett., 52, 23522355, doi:10.1103/PhysRevLett.52.2352.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2002: Parameterizing scalar transfer over snow and ice: A review. J. Hydrometeor., 3, 417432, doi:10.1175/1525-7541(2002)003<0417:PSTOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C. S. Konor, 1996: Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σp vertical coordinates. Mon. Wea. Rev., 124, 511528, doi:10.1175/1520-0493(1996)124<0511:VDOTPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, G. Lenderink, E. van Meijgaard, and A. A. M. Holtslag, 2010: How to design single-column model experiments for comparison with observed nocturnal low-level jets? Quart. J. Roy. Meteor. Soc., 136, 671684, doi:10.1002/qj.592.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., G. Svensson, and M. Tjernstr om, 2008: On the scale-dependence of the gradient Richardson number in the residual layer. Bound.-Layer Meteor., 127, 5772, doi:10.1007/s10546-007-9251-0.

    • Search Google Scholar
    • Export Citation
  • Banta, R., Y. Pechugina, and R. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, doi:10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., J. Mailhot, J. W. Strapp, and J. I. MacPherson, 1999: An examination of local versus nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions. J. Appl. Meteor., 38, 14991518, doi:10.1175/1520-0450(1999)038<1499:AEOLVN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., R. Brown, J. Mailhot, B. Bilodeau, and L.-P. Crevier, 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., L.-P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., M. Roch, A.-M. Leduc, P. A. Vaillancour, S. Laroche, and J. Mailhot, 2009: Medium-range quantitative precipitation forecasts from Canada’s new 33-km deterministic global operational system. Wea. Forecasting, 24, 690708, doi:10.1175/2008WAF2222175.1.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A., and P. Viterbo, 1998: The role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., North-Holland, 287–304.

  • Benoit, R., J. Côté, and J. Mailhot, 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117, 17261750, doi:10.1175/1520-0493(1989)117<1726:IOATBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, doi:10.1029/JZ067i008p03095.

    • Search Google Scholar
    • Export Citation
  • Bosveld, F., and Coauthors, 2014: The third GABLS intercomparison case for model evaluation. Bound.-Layer Meteor., 152, 157–187, doi:10.1007/s10546-014-9919-1.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev. ,117, 1872–1890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1969: Note on the critical Richardson number(s). Quart. J. Roy. Meteor. Soc., 95, 653654, doi:10.1002/qj.49709540519.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., 2002: Critical Richardson numbers and gravity waves. Astron. Astrophys., 384, 11191123, doi:10.1051/0004-6361:20011773.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and F. Minotti, 1993: Stratified turbulence in the atmosphere and ocean: A new subgrid model. J. Atmos. Sci., 50, 19251935, doi:10.1175/1520-0469(1993)050<1925:STITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36, 10411052, doi:10.1175/1520-0469(1979)036<1041:TITESB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasigeostrophic equations for barotropic and simple baroclinic flows. J. Meteor., 10, 7199, doi:10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charron, M., and Coauthors, 2012: The stratospheric extension of the Canadian global deterministic medium-range weather forecasting system and its impact on tropospheric forecasts. Mon. Wea. Rev., 140, 19241944, doi:10.1175/MWR-D-11-00097.1.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., 1970: Recommended methods for the treatment of the boundary layer in numerical models of the atmosphere. Aust. Meteor. Mag., 18, 5173.

    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Mon. Wea. Rev., 126, 13731395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303, doi:10.1007/s10546-005-3780-1.

    • Search Google Scholar
    • Export Citation
  • Dalaudier, F., and C. Sidi, 1987: Evidence and interpretation of a spectral gap in the turbulent atmospheric temperature spectra. J. Atmos. Sci., 44, 3121–3126, doi:10.1175/1520-0469(1987)044<3121:EAIOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., and C. Girard, 1992: Stability functions correct at the free convection limit and consistent for both the surface and Ekman layers. Bound.-Layer Meteor., 58, 1931, doi:10.1007/BF00120749.

    • Search Google Scholar
    • Export Citation
  • Fiedler, F., and H. A. Panofsky, 1970: Atmospheric scales and spectral gaps. Bull. Amer. Meteor. Soc., 51, 11141119, doi:10.1175/1520-0477(1970)051<1114:ASASG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., 1971: The effect of stable thermal stratification on the stability of viscous parallel flows. J. Fluid Mech., 47, 120, doi:10.1017/S0022112071000892.

    • Search Google Scholar
    • Export Citation
  • Girard, C., and Coauthors, 2014: Staggered vertical discretization of the Canadian environmental multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, doi:10.1175/MWR-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., J. E. Gaynor, R. J. Zamora, and W. D. Neff, 1985: Finestructure of elevated stable layers observed by sounder and in situ tower sensors. J. Atmos. Sci., 42, 21562169, doi:10.1175/1520-0469(1985)042<2156:FOESLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 5182, doi:10.1007/s10546-012-9771-0.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol. Terr. Phys., 59, 371386, doi:10.1016/S1364-6826(96)00079-X.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol. Terr. Phys., 59, 387–400, doi:10.1016/S1364-6826(96)00080-6.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 2006: GEWEX Atmospheric Boundary-Layer Study (GABLS) on stable boundary layers. Bound.-Layer Meteor., 118, 243246, doi:10.1007/s10546-005-9008-6.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Howard, L., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, doi:10.1017/S0022112061000317.

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, doi:10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49, 93106, doi:10.1007/BF01025402.

    • Search Google Scholar
    • Export Citation
  • Klipp, C. L., and L. Mahrt, 2004: Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130, 20872103, doi:10.1256/qj.03.161.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 1921.

  • Kondo, J., O. Kanechika, and N. Yasuda, 1978: Heat and momentum transfers under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, 10121021, doi:10.1175/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krasnosel’skii, M. A., and A. V. Pokrovskii, 1989: Systems with Hysteresis. Springer-Verlag, 410 pp.

  • Laroche, S., M. Tanguay, and Y. Delage, 2002: Linearization of a simplified planetary boundary layer parameterization. Mon. Wea. Rev., 130, 20742087, doi:10.1175/1520-0493(2002)130<2074:LOASPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. W. Barker, 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309, doi:10.1175/JAS-3396.1.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. J. Theor. Comp. Fluid Dyn., 11, 263280, doi:10.1007/s001620050093.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • Mailhot, J., and R. Benoit, 1982: A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models. J. Atmos. Sci., 39, 22492266, doi:10.1175/1520-0469(1982)039<2249:AFEMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 1998: Scientific description of RPN physics library—Version 3.6. Atmospheric Environment Service Tech. Rep., 188 pp. [Available online at http://collaboration.cmc.ec.gc.ca/science/rpn/physics/physic98.pdf.]

  • Majda, A., and M. Shefter, 1998: Elementary stratified flows with instability at large Richardson number. J. Fluid Mech., 376, 319350, doi:10.1017/S0022112098003085.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and G. Svensson, 2007: Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci., 64, 645655, doi:10.1175/JAS3856.1.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity-wave drag on the circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, C. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Nicholls, S., 1985: Aircraft observations of the Ekman layer during the Joint Air-Sea Interaction Experiment. Quart. J. Roy. Meteor. Soc., 111, 391426, doi:10.1002/qj.49711146807.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1970: Turbulent transport near the ground in stable conditions. J. Appl. Meteor., 9, 778786, doi:10.1175/1520-0450(1970)009<0778:TTNTGI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and I. Van der Hoven, 1955: Spectra and cross-spectra of velocity components in the mesometeorological range. Quart. J. Roy. Meteor. Soc., 81, 603606, doi:10.1002/qj.49708135010.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., and W. Swinbank, 1947: On the application of the Richardson criterion to large scale turbulence in the free atmosphere. Quart. J. Roy. Meteor. Soc., 73, 335345, doi:10.1002/qj.49707331708.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., 1955: Free and forced convection in the atmosphere near the ground. Quart. J. Roy. Meteor. Soc., 81, 139143, doi:10.1002/qj.49708134802.

    • Search Google Scholar
    • Export Citation
  • Reiter, E. R., and P. F. Lester, 1967: The dependence of the Richardson number on scale length. Dept. of Atmospheric Science Tech. Paper 111, Colorado State University, Fort Collins, CO, 39 pp. [Available online at http://hdl.handle.net/10217/256.]

  • Reiter, E. R., and P. F. Lester, 1968: Richardson’s number in the free atmosphere. Arch. Meteor. Geophys. Bioklimatol.,17A, 17.

  • Richardson, L. F., 1920: The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London, 97A, 354373, doi:10.1098/rspa.1920.0039.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp.

  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, doi:10.1175/JAS-D-11-082.1.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690, doi:10.1002/qj.49710444110.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1914: Eddy motion in the atmosphere. Philos. Trans. Roy. Soc. London, 215A, 126, doi:10.1098/rsta.1915.0001.

  • Taylor, G. I., 1931: Effect of variation in density on the stability of superposed streams of fluids. Proc. Roy. Soc. London, 132A, 499523, doi:10.1098/rspa.1931.0115.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., 2005: The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001). Bound.-Layer Meteor., 117, 536, doi:10.1007/s10546-004-5641-8.

    • Search Google Scholar
    • Export Citation
  • Toorman, E. A., 2002: Modelling of turbulent flow with suspended cohesive sediment. Proc. Mar. Sci., 5, 155169, doi:10.1016/S1568-2692(02)80014-6.

    • Search Google Scholar
    • Export Citation
  • Van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 3969, doi:10.1007/BF00122486.

    • Search Google Scholar
    • Export Citation
  • Van Gasel, P., and J. L. Pelegri, 2004: Estimates of gradient Richardson numbers from vertically smoothed data in the Gulf Stream region. Sci. Mar., 68, 459482.

    • Search Google Scholar
    • Export Citation
  • Williams, A. G., H. Kraus, and J. M. Hacker, 1996: Transport processes in the tropical warm pool boundary layer. Part I: Spectral composition of fluxes. J. Atmos. Sci., 53, 11871202, doi:10.1175/1520-0469(1996)053<1187:TPITTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1969: On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere. Radio Sci., 4, 12891298, doi:10.1029/RS004i012p01289.

    • Search Google Scholar
    • Export Citation
  • Yeh, K.-S., J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 2002: The CMC–MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 130, 339356, doi:10.1175/1520-0493(2002)130<0339:TCMGEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., M. Roch, S. Laroche, and M. Charron, 2003: The subgrid-scale orographic blocking parametrization of the GEM model. Atmos.–Ocean, 41, 155170, doi:10.3137/ao.410204.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105, 389409, doi:10.1023/A:1020376832738.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Easu, T. Mauritsen, and M. W. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, doi:10.1002/qj.264.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 735 254 12
PDF Downloads 345 81 3