Influence of Terrain Resolution on Banded Convection in the Lee of the Rocky Mountains

Russ S. Schumacher Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Russ S. Schumacher in
Current site
Google Scholar
PubMed
Close
,
David M. Schultz Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by David M. Schultz in
Current site
Google Scholar
PubMed
Close
, and
John A. Knox Department of Geography, The University of Georgia, Athens, Georgia

Search for other papers by John A. Knox in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 16–17 February 2007, snowbands formed in the lee of the Rocky Mountains in Wyoming, Colorado, and Nebraska on the anticyclonic-shear side of a midlevel jet streak. Two types of bands were prevalent: a longer, wider band associated with frontogenesis along an equatorward-moving cold front (major band) and multiple shorter, narrower bands farther poleward (minor bands). To understand how the upstream terrain affected the occurrence and intensity of the bands, multiple mesoscale model simulations were performed in which the terrain was incrementally smoothed. The evolutions of the synoptic patterns were similar in all simulations that included topography, but the synoptic pattern differed and no bands developed in a simulation with a flat land surface. These results allowed a focus on the changes to the banded precipitation due to the terrain resolution. Remarkably, although the exact location of the bands differed from run to run, the bands in all simulations with topography were in roughly the same region where they occurred on 16–17 February 2007. The major band was associated with frontogenesis along an equatorward-moving cold front that became stalled against the terrain. The minor bands formed from the release of conditional, symmetric, and inertial instabilities by ascent up the large-scale topography, rather than by ascent up specific small-scale topographic features. Because the bands were not tied to specific terrain features, these results suggest that the precise location of the minor bands is unpredictable.

Corresponding author address: Dr. Russ Schumacher, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: russ.schumacher@colostate.edu

Abstract

On 16–17 February 2007, snowbands formed in the lee of the Rocky Mountains in Wyoming, Colorado, and Nebraska on the anticyclonic-shear side of a midlevel jet streak. Two types of bands were prevalent: a longer, wider band associated with frontogenesis along an equatorward-moving cold front (major band) and multiple shorter, narrower bands farther poleward (minor bands). To understand how the upstream terrain affected the occurrence and intensity of the bands, multiple mesoscale model simulations were performed in which the terrain was incrementally smoothed. The evolutions of the synoptic patterns were similar in all simulations that included topography, but the synoptic pattern differed and no bands developed in a simulation with a flat land surface. These results allowed a focus on the changes to the banded precipitation due to the terrain resolution. Remarkably, although the exact location of the bands differed from run to run, the bands in all simulations with topography were in roughly the same region where they occurred on 16–17 February 2007. The major band was associated with frontogenesis along an equatorward-moving cold front that became stalled against the terrain. The minor bands formed from the release of conditional, symmetric, and inertial instabilities by ascent up the large-scale topography, rather than by ascent up specific small-scale topographic features. Because the bands were not tied to specific terrain features, these results suggest that the precise location of the minor bands is unpredictable.

Corresponding author address: Dr. Russ Schumacher, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: russ.schumacher@colostate.edu
Save
  • Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, doi:10.1175/MWR-D-12-00328.1.

    • Search Google Scholar
    • Export Citation
  • Andretta, T. A., 2014: Topographic sensitivity of the Snake River Plain Convergence Zone of eastern Idaho. Part II: Numerical simulations. Electron. J. Severe Storms Meteor., 9 (1). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/129.]

    • Search Google Scholar
    • Export Citation
  • Andretta, T. A., and B. Geerts, 2010: Heavy snowfall produced by topographically induced winds in the Snake River Plain of eastern Idaho. Part I: Observational analysis. Electron. J. Severe Storms Meteor., 5 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/56/74.]

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., W. E. Bracken, and A. Seimon, 1998: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia-gravity wave. Mon. Wea. Rev., 126, 14971527, doi:10.1175/1520-0493(1998)126<1497:ASOCMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1997: Mesoscale anticyclonic circulations in the lee of the central Rocky Mountains. Mon. Wea. Rev., 125, 28382855, doi:10.1175/1520-0493(1997)125<2838:MACITL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., E. Richard, C. Schär, R. Rotunno, L. Nance, M. Sprenger, and R. Benoit, 2004: The wake south of the Alps: Dynamics and structure of the lee-side flow and secondary potential vorticity banners. Quart. J. Roy. Meteor. Soc., 130, 12751303, doi:10.1256/qj.03.17.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., 2004: Bora-driven potential vorticity banners over the Adriatic. Quart. J. Roy. Meteor. Soc., 130, 25712603, doi:10.1256/qj.03.71.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1978: Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys., 16, 741755, doi:10.1029/RG016i004p00741.

    • Search Google Scholar
    • Export Citation
  • Hoggatt, B. D., and J. A. Knox, 1998: Non-hydrostatic simulation of unforecast convection in an intense mid-latitude anticyclone. Preprints, 16th Conf. on Weather Analysis and Prediction/12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 59–62.

  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 552 pp.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225300.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res.,113, D13103, doi:10.1029/2008JD009944.

  • Jascourt, S. D., S. S. Lindstrom, C. J. Seman, and D. D. Houghton, 1988: An observation of banded convective development in the presence of weak symmetric stability. Mon. Wea. Rev., 116, 175191, doi:10.1175/1520-0493(1988)116<0175:AOOBCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., R. B. Smith, and J. Doyle, 2003: The nature of the mistral: Observations and modeling of two MAP events. Quart. J. Roy. Meteor. Soc., 129, 857875, doi:10.1256/qj.02.21.

    • Search Google Scholar
    • Export Citation
  • Keshishian, L. G., L. F. Bosart, and W. E. Bracken, 1994: Inverted troughs and cyclogenesis over interior North America: A limited regional climatology and case studies. Mon. Wea. Rev., 122, 565607, doi:10.1175/1520-0493(1994)122<0565:ITACOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2005a: Observations and modeling of banded orographic convection. J. Atmos. Sci., 62, 14631479, doi:10.1175/JAS3417.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2005b: Atmospheric factors governing banded orographic convection. J. Atmos. Sci., 62, 37583774, doi:10.1175/JAS3568.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., G. H. Bryan, R. Rotunno, and D. R. Durran, 2007a: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64, 15301549, doi:10.1175/JAS3924.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., G. H. Bryan, and R. Rotunno, 2007b: The spacing of orographic rainbands triggered by small-scale topography. J. Atmos. Sci., 64, 42224245, doi:10.1175/2007JAS2335.1.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., 2003: Inertial instability. Encyclopedia of the Atmospheric Sciences, J. Holton, J. Pyle, and J. Curry, Eds., Academic Press, 1004–1013.

  • Knox, J. A., and B. D. Hoggatt, 1996: Mesoscale dynamics of mid-level convection in an intense mid-latitude anticyclone. Preprints, Seventh Conf. on Mesoscale Processes, Reading, United Kingdom, Amer. Meteor. Soc., 453–455.

  • Koch, S. E., and L. M. Siedlarz, 1999: Mesoscale gravity waves and their environment in the central United States during STORM-FEST. Mon. Wea. Rev., 127, 28542879, doi:10.1175/1520-0493(1999)127<2854:MGWATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., J. R. Gyakum, K. Lombardo, and E. H. Atallah, 2014: On the dynamics, thermodynamics, and forecast model evaluation of two snow-burst events in southern Alberta. Wea. Forecasting, 29, 725749, doi:10.1175/WAF-D-13-00099.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. A. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, doi:10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Vaughan, and D. M. Schultz, 2013: Snowbands over the English Channel and Irish Sea during cold-air outbreaks. Quart. J. Roy. Meteor. Soc., 139, 17471761, doi:10.1002/qj.2079.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold season banded precipitation in northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, doi:10.1175/815.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., J. S. Waldstreicher, D. Keyser, and L. F. Bosart, 2006: A forecast strategy for anticipating cold season mesoscale band formation within eastern U.S. cyclones. Wea. Forecasting, 21, 323, doi:10.1175/WAF907.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, doi:10.1175/2007MWR2233.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, doi:10.1175/2009MWR2874.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, doi:10.1175/2010MWR3219.1.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., and R. R. Braham, 1981: The role of the winter land breeze in the formation of Great Lake snow storms. Bull. Amer. Meteor. Soc., 62, 482492, doi:10.1175/1520-0477(1981)062<0482:TROTWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2014: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Search Google Scholar
    • Export Citation
  • Ripa, P., 1983: General stability conditions for zonal flows in a one-layer model on the β-plane or the sphere. J. Fluid Mech., 126, 463489, doi:10.1017/S0022112083000270.

    • Search Google Scholar
    • Export Citation
  • Schär, C., M. Sprenger, D. Lüthi, Q. Jiang, R. B. Smith, and R. Benoit, 2003: Structure and dynamics of an Alpine potential-vorticity banner. Quart. J. Roy. Meteor. Soc., 129, 825855, doi:10.1256/qj.02.47.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and J. A. Knox, 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952110, doi:10.1175/MWR3400.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., D. S. Arndt, D. J. Stensrud, and J. W. Hanna, 2004: Snowbands during the cold-air outbreak of 23 January 2003. Mon. Wea. Rev., 132, 827842, doi:10.1175/1520-0493(2004)132<0827:SDTCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2010: Convective snowbands downstream of the Rocky Mountains in an environment with conditional, dry symmetric and inertial instabilities. Mon. Wea. Rev., 138, 44164438, doi:10.1175/2010MWR3334.1.

    • Search Google Scholar
    • Export Citation
  • Seltzer, M. A., R. E. Passarelli, and K. A. Emanuel, 1985: The possible role of symmetric instability in the formation of precipitation bands. J. Atmos. Sci., 42, 22072219, doi:10.1175/1520-0469(1985)042<2207:TPROSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Snook, J. S., 1992: Current techniques for real-time evaluation of conditional symmetric instability. Wea. Forecasting, 7, 430439, doi:10.1175/1520-0434(1992)007<0430:CTFRTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and C. F. Mass, 1994: The structure and evolution of a simulated Rocky Mountain lee trough. Mon. Wea. Rev., 122, 27402761, doi:10.1175/1520-0493(1994)122<2740:TSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and P. E. Ciesielski, 1986: Inertial instability of horizontally sheared flow away from the equator. J. Atmos. Sci., 43, 28452856, doi:10.1175/1520-0469(1986)043<2845:IIOHSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolfsberg, D. G., K. A. Emanuel, and R. E. Passarelli, 1986: Band formation in a New England winter storm. Mon. Wea. Rev., 114, 15521569, doi:10.1175/1520-0493(1986)114<1552:BFIANE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 462 258 15
PDF Downloads 229 74 12