Intraseasonal Variability of Hail in the Contiguous United States: Relationship to the Madden–Julian Oscillation

Bradford S. Barrett Oceanography Department, U.S. Naval Academy, Annapolis, Maryland

Search for other papers by Bradford S. Barrett in
Current site
Google Scholar
PubMed
Close
and
Brittany N. Henley Oceanography Department, U.S. Naval Academy, Annapolis, Maryland

Search for other papers by Brittany N. Henley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climatologies have been developed to highlight variability of the frequency and intensity of hail in the United States. However, the intraseasonal variability of hail, including why one week might be active while the following inactive despite both having similar climatological probabilities, has not yet been explored. This paper presents relationships between spring-season (April–June) hail days and the leading mode of atmospheric intraseasonal variability, the Madden–Julian oscillation (MJO). It extends recent work on intraseasonal tornado variability to smaller spatial scales. In April, May, and June, statistically significant variability in hail days was found for different Real-time Multivariate MJO (RMM) phases of the MJO. For April, the strongest correlations between hail-day anomalies and anomalies of the product of convective available potential energy (CAPE) and 0–6-km vertical wind shear were found in RMM phase 5, with above-normal likelihood of a hail day found in the south-central United States. For May, the strongest correlations were found in RMM phase 3, with below-normal likelihood of a hail day located over the north-central United States. For June, the strongest correlations were found in phase 8, with above-normal likelihood of hail in west Texas and below-normal likelihood of hail over much of the middle of the United States. In all phases, 300-hPa height anomalies in the United States formed part of a global wave train similar to MJO patterns in both modeling and observational studies.

Corresponding author address: Bradford S. Barrett, Oceanography Department, U.S. Naval Academy, 572C Holloway Rd., Annapolis, MD 21402. E-mail: bbarrett@usna.edu

Abstract

Climatologies have been developed to highlight variability of the frequency and intensity of hail in the United States. However, the intraseasonal variability of hail, including why one week might be active while the following inactive despite both having similar climatological probabilities, has not yet been explored. This paper presents relationships between spring-season (April–June) hail days and the leading mode of atmospheric intraseasonal variability, the Madden–Julian oscillation (MJO). It extends recent work on intraseasonal tornado variability to smaller spatial scales. In April, May, and June, statistically significant variability in hail days was found for different Real-time Multivariate MJO (RMM) phases of the MJO. For April, the strongest correlations between hail-day anomalies and anomalies of the product of convective available potential energy (CAPE) and 0–6-km vertical wind shear were found in RMM phase 5, with above-normal likelihood of a hail day found in the south-central United States. For May, the strongest correlations were found in RMM phase 3, with below-normal likelihood of a hail day located over the north-central United States. For June, the strongest correlations were found in phase 8, with above-normal likelihood of hail in west Texas and below-normal likelihood of hail over much of the middle of the United States. In all phases, 300-hPa height anomalies in the United States formed part of a global wave train similar to MJO patterns in both modeling and observational studies.

Corresponding author address: Bradford S. Barrett, Oceanography Department, U.S. Naval Academy, 572C Holloway Rd., Annapolis, MD 21402. E-mail: bbarrett@usna.edu
Save
  • Allen, J. T., D. J. Karoly, and G. A. Mills, 2011: A severe thunderstorm climatology for Australia and associated thunderstorm environments. Aust. Meteor. Ocean J., 61, 143158.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., doi:10.1002/2014MS000397, in press.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and V. A. Gensini, 2013: Variability of central United States April–May tornado day likelihood by phase of the Madden-Julian Oscillation. Geophys. Res. Lett., 40, 27902795, doi:10.1002/grl.50522.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1992: Principles of Kinematics and Dynamics. Vol. 1, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 448 pp.

  • Brandes, E., J. Vivekanadan, J. Tuttle, and G. Kessinger, 1997: Hail production in Northeast Colorado hailstorms. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 527530.

  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, doi:10.1016/j.atmosres.2012.04.002.

  • Brooks, H. E., and R. B. Wilhelmson, 1990: The effects of low-level hodograph curvature on supercell structure. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, Alberta, Canada, Amer. Meteor. Soc., 3439.

  • Browning, K. A., 1977: The structure and mechanisms of hailstorms. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 1–43.

  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, doi:10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1999: Data and approaches for determining hail risk in the contiguous United States. J. Appl. Meteor., 38, 17301739, doi:10.1175/1520-0450(1999)038<1730:DAAFDH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2002: Climatology of hail risk in the United States. Tech. Rep. CRR-40, Changnon Climatologists, Mahomet, IL, 67 pp.

  • Changnon, S. A., and D. Changnon, 2009: Assessment of a method used to time-adjust past storm losses. Nat. Hazards, 38, 412.

  • Changnon, S. A., D. Changnon, and S. D. Hilberg, 2009: Hailstorms across the nation: An atlas about hail and its damages. Illinois State Water Survey Contract Rep. 2009-12, 101 pp.

  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, doi:10.1175/WAF-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. M. Schultz, 2006: On the use of indices and parameters in forecasting. Electron. J. Severe Storms Meteor., 1 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/11/12.]

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, S. J. Weiss, and R. H. Johns, 1993: Tornado forecasting: A review. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 557–571.

  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, doi:10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, R. Edwards, R. L. Thompson, J. A. Hart, and K. C. Crosbie, 2006: A simple and flexible method for ranking severe weather events. Wea. Forecasting, 21, 939951, doi:10.1175/WAF959.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, R. H., 1963: Recent hail research: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 157–172.

  • Elsner, J. B., and H. M. Widen, 2014: Predicting spring tornado activity in the central Great Plains by 1 March. Mon. Wea. Rev., 142, 259267, doi:10.1175/MWR-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., P. L. Heinselman, D. R. MacGorman, and E. C. Bruning, 2011: Lightning activity in a hail-producing storm observed with phased-array radar. Mon. Wea. Rev., 139, 18091825, doi:10.1175/2010MWR3574.1.

    • Search Google Scholar
    • Export Citation
  • Ferree, J., 2010: National change of the hail criteria for severe storms from 3/4 inch to 1 inch beginning January 5, 2010. Severe Storms Services, NOAA/National Weather Service, 8 pp. [Available online at http://www.nws.noaa.gov/oneinchhail/docs/One_Inch_Hail.pdf].

  • Foote, G. B., and C. A. Knight, Eds., 1977: Hail: A Review of Hail Science and Hail Suppression. Meteor. Monogr., No. 38, Amer. Meteor. Soc., 277 pp.

  • Gensini, V. A., and W. S. Ashley, 2011: Climatology of potentially severe convective environments from the North American Regional Reanalysis. Electron. J. Severe Storms Meteor., 6 (8). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.]

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014: Severe thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteor. Climatol., 53, 742751, doi:10.1175/JAMC-D-13-0263.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hughes, P., and R. Wood, 1993: Hail: The white plague. Weatherwise, 46,1621, doi:10.1080/00431672.1993.9930228.

  • Jewell, R., and J. Brimelow, 2009: Evaluation of Alberta hail growth model using severe hail proximity soundings from the United States. Wea. Forecasting, 24, 15921609, doi:10.1175/2009WAF2222230.1.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: The Madden–Julian Oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132, 14621471, doi:10.1175/1520-0493(2004)132<1462:TMOAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., J. Gottschalck, L. Carvalho, and W. Higgins, 2011: Influence of the Madden–Julian oscillation on forecasts of extreme precipitation in the contiguous United States. Mon. Wea. Rev., 139, 332350, doi:10.1175/2010MWR3512.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 5364–5378, doi:10.1175/JCLI-D-13-00480.1.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 2001: Hailstorms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 223–254.

  • Madden, R., and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian Oscillation during Northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • McCaul, W. W., Jr., 1990: Simulations of convective storms in hurricane environments. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, Alberta, Canada, Amer. Meteor. Soc., 334339.

  • Mercer, A. E., C. M. Shafer, C. A. Doswell, L. M. Leslie, and M. B. Richman, 2012: Synoptic composites of tornadic and nontornadic outbreaks. Mon. Wea. Rev., 140, 25902608, doi:10.1175/MWR-D-12-00029.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, doi:10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2011: Tropical extratropical interactions. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K. M. Lau and D. E. Waliser, Eds., Springer, 497–512.

  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, doi:10.1175/JAMC-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., J. J. Levit, S. J. Weiss, and D. W. McCarthy, 2004: The frequency of large hail over the contiguous United States. 14th Conf. on Applied Meteorology, Seattle, WA, Amer. Meteor. Soc., 3.3. [Available online at http://ams.confex.com/ams/pdfpapers/69834.pdf.]

  • Shafer, C. M., A. E. Mercer, C. A. Doswell, M. B. Richman, and L. M. Leslie, 2009: Evaluation of WRF forecasts of tornadic and nontornadic outbreaks when initialized with synoptic-scale input. Mon. Wea. Rev., 137, 12501271, doi:10.1175/2008MWR2597.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, C. M., A. E. Mercer, L. M. Leslie, M. B. Richman, and C. A. Doswell, 2010: Evaluation of WRF model simulations of tornadic and nontornadic outbreaks that occur in the spring and fall. Mon. Wea. Rev., 138, 40984119, doi:10.1175/2010MWR3269.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. B., and P. E. Roundy, 2013: The relationship between the Madden–Julian oscillation and U.S. violent tornado outbreaks in the spring. Mon. Wea. Rev., 141, 20872095, doi:10.1175/MWR-D-12-00173.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, doi:10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Wea. Rev., 141, 41974210, doi:10.1175/MWR-D-12-00327.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Hendon, 2004: An all-season Real-Time Multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, doi:10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 545 109 16
PDF Downloads 315 105 16