A Composite Perspective of the Extratropical Flow Response to Recurving Western North Pacific Tropical Cyclones

Heather M. Archambault Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Heather M. Archambault in
Current site
Google Scholar
PubMed
Close
,
Daniel Keyser Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Daniel Keyser in
Current site
Google Scholar
PubMed
Close
,
Lance F. Bosart Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
,
Christopher A. Davis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Christopher A. Davis in
Current site
Google Scholar
PubMed
Close
, and
Jason M. Cordeira Department of Atmospheric Science and Chemistry, Plymouth State University, Plymouth, New Hampshire

Search for other papers by Jason M. Cordeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the composite extratropical flow response to recurving western North Pacific tropical cyclones (WNP TCs), and the dependence of this response on the strength of the TC–extratropical flow interaction as defined by the negative potential vorticity advection (PV) by the irrotational wind associated with the TC. The 2.5° NCEP–NCAR reanalysis is used to construct composite analyses of all 1979–2009 recurving WNP TCs and of subsets that undergo strong and weak TC–extratropical flow interactions.

Findings indicate that recurving WNP TCs are associated with the amplification of a preexisting Rossby wave train (RWT) that disperses downstream and modifies the large-scale flow pattern over North America. This RWT affects approximately 240° of longitude and persists for approximately 10 days. Recurving TCs associated with strong TC–extratropical flow interactions are associated with a stronger extratropical flow response than those associated with weak TC–extratropical flow interactions. Compared with weak interactions, strong interactions feature a more distinct upstream trough, stronger and broader divergent outflow associated with stronger midlevel frontogenesis and forcing for ascent over and northeast of the TC, and stronger upper-level PV frontogenesis that promotes more pronounced jet streak intensification. During strong interactions, divergent outflow helps anchor and amplify a downstream ridge, thereby amplifying a preexisting RWT from Asia that disperses downstream to North America. In contrast, during weak interactions, divergent outflow weakly amplifies a downstream ridge, such that a RWT briefly amplifies in situ before dissipating over the western-central North Pacific.

Current affiliation: NOAA/OAR Climate Program Office, Modeling, Analysis, Predictions and Projections Program, Silver Spring, Maryland.

Publisher’s Note: This article was revised on 10 June 2015 in order to include an updated acknowledgements section.

Corresponding author address: Heather M. Archambault, 1315 East–West Hwy., Silver Spring, MD 20910. E-mail: heather.archambault@noaa.gov

Abstract

This study investigates the composite extratropical flow response to recurving western North Pacific tropical cyclones (WNP TCs), and the dependence of this response on the strength of the TC–extratropical flow interaction as defined by the negative potential vorticity advection (PV) by the irrotational wind associated with the TC. The 2.5° NCEP–NCAR reanalysis is used to construct composite analyses of all 1979–2009 recurving WNP TCs and of subsets that undergo strong and weak TC–extratropical flow interactions.

Findings indicate that recurving WNP TCs are associated with the amplification of a preexisting Rossby wave train (RWT) that disperses downstream and modifies the large-scale flow pattern over North America. This RWT affects approximately 240° of longitude and persists for approximately 10 days. Recurving TCs associated with strong TC–extratropical flow interactions are associated with a stronger extratropical flow response than those associated with weak TC–extratropical flow interactions. Compared with weak interactions, strong interactions feature a more distinct upstream trough, stronger and broader divergent outflow associated with stronger midlevel frontogenesis and forcing for ascent over and northeast of the TC, and stronger upper-level PV frontogenesis that promotes more pronounced jet streak intensification. During strong interactions, divergent outflow helps anchor and amplify a downstream ridge, thereby amplifying a preexisting RWT from Asia that disperses downstream to North America. In contrast, during weak interactions, divergent outflow weakly amplifies a downstream ridge, such that a RWT briefly amplifies in situ before dissipating over the western-central North Pacific.

Current affiliation: NOAA/OAR Climate Program Office, Modeling, Analysis, Predictions and Projections Program, Silver Spring, Maryland.

Publisher’s Note: This article was revised on 10 June 2015 in order to include an updated acknowledgements section.

Corresponding author address: Heather M. Archambault, 1315 East–West Hwy., Silver Spring, MD 20910. E-mail: heather.archambault@noaa.gov
Save
  • Agustí-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074, doi:10.1256/qj.02.140.

    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., S. L. Gray, G. C. Craig, and C. Thorncroft, 2005: The extratropical transition of Tropical Cyclone Lili (1996) and its crucial contribution to a moderate extratropical development. Mon. Wea. Rev., 133, 15621573, doi:10.1175/MWR2935.1.

    • Search Google Scholar
    • Export Citation
  • Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32263247, doi:10.1175/2008MWR2249.1.

    • Search Google Scholar
    • Export Citation
  • Anwender, D., S. C. Jones, M. Leutbecher, and P. A. Harr, 2010: Sensitivity experiments for ensemble forecasts of the extratropical transition of Typhoon Tokage (2004). Quart. J. Roy. Meteor. Soc., 136, 183200, doi:10.1002/qj.527.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., 2011: The downstream extratropical flow response to recurving western North Pacific tropical cyclones. Ph.D. dissertation, University at Albany, State University of New York, 212 pp. [Available online at http://www.atmos.albany.edu/student/heathera/dissertation/.]

  • Archambault, H. M., L. F. Bosart, D. Keyser, and A. R. Aiyyer, 2008: Influence of large-scale flow regimes on cool-season precipitation in the northeastern United States. Mon. Wea. Rev., 136, 29452963, doi:10.1175/2007MWR2308.1.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, doi:10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32683291, doi:10.1175/1520-0493(1995)123<3268:PTCRIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., J. M. Cordeira, T. J. Galarneau Jr., B. J. Moore, and H. M. Archambault, 2012: Predecessor rain events associated with tropical cyclones Ike and Lowell (11–14 September 2008). Mon. Wea. Rev., 140, 10811107, doi:10.1175/MWR-D-11-00163.1.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., F. Pantillon, D. Lambert, E. Richard, and C. Claud, 2012: Tropical transition of a Mediterranean storm by jet crossing. Quart. J. Roy. Meteor. Soc., 138, 596611, doi:10.1002/qj.960.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., 2011: Tropical–extratropical interactions and arctic–extratropical interactions conducive to intraseasonal variability of the North Pacific jet stream. Ph.D. dissertation, University at Albany, State University of New York, 202 pp. [Available online at http://jasoncordeira.weebly.com/past-research.html.]

  • Cordeira, J. M., and L. F. Bosart, 2010: The antecedent large-scale conditions of the “Perfect Storms” of late October and early November 1991. Mon. Wea. Rev., 138, 25462569, doi:10.1175/2010MWR3280.1.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, doi:10.1175/MWR-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Danielson, R. E., J. R. Gyakum, and D. N. Straub, 2006: A case study of downstream baroclinic development over the North Pacific Ocean. Part II: Diagnoses of eddy energy and wave activity. Mon. Wea. Rev., 134, 15491567, doi:10.1175/MWR3173.1.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and A. M. Rossa, 1998: PV frontogenesis and upper-tropospheric fronts. Mon. Wea. Rev., 126, 15281539, doi:10.1175/1520-0493(1998)126<1528:PFAUTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 24832501, doi:10.1175/MWR-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1991: The frontogenetical forcing of secondary circulations. Part I: The duality and generalization of the Q vector. J. Atmos. Sci., 48, 497509, doi:10.1175/1520-0469(1991)048<0497:TFFOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, doi:10.1175/2007JAS2488.1.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 Superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072, doi:10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. Amerault, C. A. Reynolds, and P. A. Reinecke, 2014: Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon. Wea. Rev., 142, 320342, doi:10.1175/MWR-D-13-00201.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., C. A. Davis, and M. A. Shapiro, 2013: Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon. Wea. Rev., 141, 42964321, doi:10.1175/MWR-D-13-00181.1.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case study. Quart. J. Roy. Meteor. Soc., 137, 21742193, doi:10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, C. A. Davis, P. A. Harr, and M. Weissmann, 2013a: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridgebuilding and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 21482164, doi:10.1002/qj.2091.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, and C. A. Davis, 2013b: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II: Downstream evolution. Quart. J. Roy. Meteor. Soc., 139, 21652180, doi:10.1002/qj.2119.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., C. M. Dunning, J. Methven, G. Masato, and J. M. Chagnon, 2014: Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett., 41, 29792987, doi:10.1002/2014GL059282.

    • Search Google Scholar
    • Export Citation
  • Griffin, K. S., and L. F. Bosart, 2014: The extratropical transition of Tropical Cyclone Edisoana (1990). Mon. Wea. Rev., 142, 27722793, doi:10.1175/MWR-D-13-00282.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, doi:10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2005: Vertical structure of midlatitude analysis and forecast errors. Mon. Wea. Rev., 133, 567578, doi:10.1175/MWR-2882.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633, doi:10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, doi:10.1175/2008MWR2558.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and H. M. Archambault, 2015: Dynamics, predictability, and high-impact weather associated with the extratropical transition of tropical cyclones. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. Li et al., Eds., Cambridge University Press, in press.

  • Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128, 26342653, doi:10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, doi:10.1175/2008MWR2248.1.

    • Search Google Scholar
    • Export Citation
  • Henderson, J. M., G. M. Lackmann, and J. R. Gyakum, 1999: An analysis of Hurricane Opal’s forecast track errors using quasi-geostrophic potential vorticity inversion. Mon. Wea. Rev., 127, 292307, doi:10.1175/1520-0493(1999)127<0292:AAOHOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and E. Hendricks, 2010: The resonant excitation of baroclinic waves by the divergent circulation of recurving tropical cyclones. J. Atmos. Sci., 67, 36003616, doi:10.1175/2010JAS3459.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. A. Pedder, 1980: The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc., 106, 707719, doi:10.1002/qj.49710645004.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, J. L. Evans, and P. A. Harr, 2011: Characteristics of the TIGGE multimodel ensemble prediction system in representing forecast variability associated with extratropical transition. Geophys. Res. Lett., 38, L12802, doi:10.1029/2011GL047275.

    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, and P. A. Harr, 2014: An eddy kinetic energy view of physical and dynamical processes in distinct forecast scenarios for the extratropical transition of two tropical cyclones. Mon. Wea. Rev., 142, 2751–2771, doi:10.1175/MWR-D-13-00219.1.

    • Search Google Scholar
    • Export Citation
  • Kenyon, J. S., 2014: The motion of mesoscale snowbands in northeast U.S. winter storms. M.S. thesis, University at Albany, State University of New York, 108 pp. [Available online at http://www.atmos.albany.edu/student/jkenyon/Kenyon_thesis.pdf.]

  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen's frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762781, doi:10.1175/1520-0493(1988)116<0762:AGOPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., B. D. Schmidt, and D. G. Duffy, 1992: Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q vector. Mon. Wea. Rev., 120, 731741, doi:10.1175/1520-0493(1992)120<0731:QVMDFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395, doi:10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130, 22402259, doi:10.1175/1520-0493(2002)130<2240:ETOWNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, S. T. K., M. Leutbecher, and S. C. Jones, 2012: Impact of perturbation methods in the ECMWF Ensemble Prediction System on tropical cyclone forecasts. Quart. J. Roy. Meteor. Soc., 138, 20302046, doi:10.1002/qj.1942.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1999: Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream. Mon. Wea. Rev., 127, 7088, doi:10.1175/1520-0493(1999)127<0070:QFOAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: The role of shearwise and transverse quasigeostrophic vertical motions in the midlatitude cyclone life cycle. Mon. Wea. Rev., 134, 11741193, doi:10.1175/MWR3114.1.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2010: Tropopause-level waveguides. J. Atmos. Sci., 67, 866879, doi:10.1175/2009JAS2995.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina (2005). Part II: Evolution and hemispheric impacts of a diabatically generated warm pool. Mon. Wea. Rev., 135, 39273949, doi:10.1175/2007MWR2096.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., G. D. Deane, L. F. Bosart, C. A. Davis, and T. J. Galarneau Jr., 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304, doi:10.1175/2007MWR2245.1.

    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169171, doi:10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2.

  • Molinari, J., and D. Vollaro, 2012: A subtropical cyclonic gyre associated with interactions of the MJO and the midlatitude jet. Mon. Wea. Rev., 140, 343357, doi:10.1175/MWR-D-11-00049.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., L. F. Bosart, D. Keyser, and M. L. Jurewicz, 2013: Synoptic-scale environments of predecessor rain events occurring east of the Rocky Mountains in association with Atlantic basin tropical cyclones. Mon. Wea. Rev., 141, 10221047, doi:10.1175/MWR-D-12-00178.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold season-banded precipitation in northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, doi:10.1175/815.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, doi:10.1034/j.1600-0870.1995.00108.x.

    • Search Google Scholar
    • Export Citation
  • Pantillon, F., J. P. Chaboureau, C. Lac, and P. Mascart, 2013: On the role of a Rossby wave train during the extratropical transition of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 139, 370386, doi:10.1002/qj.1974.

    • Search Google Scholar
    • Export Citation
  • Pantillon, F., J. P. Chaboureau, and E. Richard, 2014: Remote impact of North Atlantic hurricanes on the Mediterranean during episodes of intense rainfall in autumn 2012. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2419, in press.

    • Search Google Scholar
    • Export Citation
  • Quinting, J. F., and S. C. Jones, 2014: The impact of tropical cyclones on midlatitude Rossby wave packets: A climatological perspective. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 13C.4. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper244440.html.]

  • Reynolds, C. A., M. S. Peng, and J. H. Chen, 2009: Recurving tropical cyclones: Singular vector sensitivity and downstream impacts. Mon. Wea. Rev., 137, 13201337, doi:10.1175/2008MWR2652.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2010: The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617637, doi:10.1002/qj.605.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2014: Interaction of a tropical cyclone with a high-amplitude, midlatitude wave pattern: Waviness analysis, trough deformation and track bifurcation. Quart. J. Roy. Meteor. Soc., 140, 13621376, doi:10.1002/qj.2221.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modeling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991, doi:10.1002/qj.189.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. Baumgart, and S. Eiermann, 2014: Cyclogenesis downstream of extratropical transition analyzed by Q-vector partitioning based on flow geometry. J. Atmos. Sci., 71, 42044220, doi:10.1175/JAS-D-14-0023.1.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclone. Mon. Wea. Rev., 135, 862876, doi:10.1175/MWR3303.1.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and Coauthors, 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405, doi:10.1175/BAMS-D-12-00099.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281268, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 12391254, doi:10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., Z. Toth, A. V. Zimin, S. J. Majumdar, and A. Persson, 2002: Propagation of the effect of targeted observations: The 2000 Winter Storm Reconnaissance Program. Mon. Wea. Rev., 130, 11441165, doi:10.1175/1520-0493(2002)130<1144:POTEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Diagnosis of the downstream ridging associated with extratropical transition using short-term ensemble forecasts. J. Atmos. Sci., 67, 817833, doi:10.1175/2009JAS3093.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1191 408 17
PDF Downloads 804 190 16