Central and Eastern U.S. Surface Pressure Variations Derived from the USArray Network

Alexander A. Jacques Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Alexander A. Jacques in
Current site
Google Scholar
PubMed
Close
,
John D. Horel Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by John D. Horel in
Current site
Google Scholar
PubMed
Close
,
Erik T. Crosman Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Erik T. Crosman in
Current site
Google Scholar
PubMed
Close
, and
Frank L. Vernon Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Frank L. Vernon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-magnitude pressure signatures associated with a wide range of atmospheric phenomena (e.g., mesoscale gravity waves, convective complexes, tropical disturbances, and synoptic storm systems) are examined using a unique set of surface pressure sensors deployed as part of the National Science Foundation EarthScope USArray Transportable Array. As part of the USArray project, approximately 400 seismic stations were deployed in a pseudogrid fashion across a portion of the United States for 1–2 yr, then retrieved and redeployed farther east. Surface pressure observations at a sampling frequency of 1 Hz were examined during the period 1 January 2010–28 February 2014 when the seismic array was transitioning from the central to eastern continental United States. Surface pressure time series at over 900 locations were bandpass filtered to examine pressure perturbations on three temporal scales: meso- (10 min–4 h), subsynoptic (4–30 h), and synoptic (30 h–5 days) scales.

Case studies of strong pressure perturbations are analyzed using web tools developed to visualize and track tens of thousands of such events with respect to archived radar imagery and surface wind observations. Seasonal assessments of the bandpass-filtered variance and frequency of large-magnitude events are conducted to identify prominent areas of activity. Large-magnitude mesoscale pressure perturbations occurred most frequently during spring in the southern Great Plains and shifted northward during summer. Synoptic-scale pressure perturbations are strongest during winter in the northern states with maxima located near the East Coast associated with frequent synoptic development along the coastal storm track.

Corresponding author address: Alexander A. Jacques, Department of Atmospheric Sciences, University of Utah, 135 South 1460 East, Rm. 819, Salt Lake City, UT 84112.E-mail: alexander.jacques@utah.edu

Abstract

Large-magnitude pressure signatures associated with a wide range of atmospheric phenomena (e.g., mesoscale gravity waves, convective complexes, tropical disturbances, and synoptic storm systems) are examined using a unique set of surface pressure sensors deployed as part of the National Science Foundation EarthScope USArray Transportable Array. As part of the USArray project, approximately 400 seismic stations were deployed in a pseudogrid fashion across a portion of the United States for 1–2 yr, then retrieved and redeployed farther east. Surface pressure observations at a sampling frequency of 1 Hz were examined during the period 1 January 2010–28 February 2014 when the seismic array was transitioning from the central to eastern continental United States. Surface pressure time series at over 900 locations were bandpass filtered to examine pressure perturbations on three temporal scales: meso- (10 min–4 h), subsynoptic (4–30 h), and synoptic (30 h–5 days) scales.

Case studies of strong pressure perturbations are analyzed using web tools developed to visualize and track tens of thousands of such events with respect to archived radar imagery and surface wind observations. Seasonal assessments of the bandpass-filtered variance and frequency of large-magnitude events are conducted to identify prominent areas of activity. Large-magnitude mesoscale pressure perturbations occurred most frequently during spring in the southern Great Plains and shifted northward during summer. Synoptic-scale pressure perturbations are strongest during winter in the northern states with maxima located near the East Coast associated with frequent synoptic development along the coastal storm track.

Corresponding author address: Alexander A. Jacques, Department of Atmospheric Sciences, University of Utah, 135 South 1460 East, Rm. 819, Salt Lake City, UT 84112.E-mail: alexander.jacques@utah.edu
Save
  • Adams-Selin, R. D., and R. H. Johnson, 2010: Mesoscale surface pressure and temperature features associated with bow echoes. Mon. Wea. Rev., 138, 212227, doi:10.1175/2009MWR2892.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., and R. H. Johnson, 2013: Examination of gravity waves associated with the 13 March 2003 bow echo. Mon. Wea. Rev., 141, 37353756, doi:10.1175/MWR-D-12-00343.1.

    • Search Google Scholar
    • Export Citation
  • Alexandersson, H., T. Schmith, K. Iden, and H. Tuomenvirta, 1998: Long-term variations of the storm climate over NW Europe. Global Atmos. Ocean Syst., 6, 97120.

    • Search Google Scholar
    • Export Citation
  • Bärring, L., and K. Fortuniak, 2009: Multi-indices analysis of southern Scandinavian storminess 1780–2005 and links to interdecadal variations in the NW Europe-North Sea region. Int. J. Climatol., 29, 373384, doi:10.1002/joc.1842.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., W. E. Bracken, and A. Seimon, 1998: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia–gravity wave. Mon. Wea. Rev., 126, 14971527, doi:10.1175/1520-0493(1998)126<1497:ASOCMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, P. A., K. A. Browning, C. J. Morcrette, A. M. Blyth, R. M. Forbes, B. Brooks, and F. Perry, 2014: The evolution of an MCS over southern England. Part 1: Observations. Quart. J. Roy. Meteor. Soc., 140, 439457, doi:10.1002/qj.2138.

    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and K. R. Knupp, 2009: Factors affecting surface wind speeds in gravity waves and wake lows. Wea. Forecasting, 24, 16641679, doi:10.1175/2009WAF2222248.1.

    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and K. R. Knupp, 2010: A nonlinear impedance relation for the surface winds in pressure disturbances. J. Atmos. Sci., 67, 34093422, doi:10.1175/2010JAS3457.1.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, doi:10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 38743891, doi:10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Groot-Hedlin, C. D., M. A. Hedlin, and K. T. Walker, 2014: Detection of gravity waves across the USArray: A case study. Earth Planet. Sci. Lett., 402, 346–352, doi:10.1016/j.epsl.2013.06.042.

    • Search Google Scholar
    • Export Citation
  • de Pondeca, M., and Coauthors, 2011: The real-time mesoscale analysis at NOAA’s National Centers for Environmental Prediction: Current status and development. Wea. Forecasting, 26, 593612, doi:10.1175/WAF-D-10-05037.1.

    • Search Google Scholar
    • Export Citation
  • Dirren, S., R. D. Torn, and G. J. Hakim, 2007: A data assimilation case study using a limited-area ensemble Kalman filter. Mon. Wea. Rev., 135, 14551473, doi:10.1175/MWR3358.1.

    • Search Google Scholar
    • Export Citation
  • Einaudi, F., A. J. Bedard, and J. J. Finnigan, 1989: A climatology of gravity waves and other coherent disturbances at the Boulder Atmospheric Observatory during March–April 1984. J. Atmos. Sci., 46, 303329, doi:10.1175/1520-0469(1989)046<0303:ACOGWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, doi:10.1175/2008MWR2528.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and H. A. Brown, 1958: A study of mesosystems and their radar echoes. Bull. Amer. Meteor. Soc., 39, 538554.

  • Gaberšek, S., and D. R. Durran, 2006: Gap flows through idealized topography. Part II: Effects of rotation and surface friction. J. Atmos. Sci., 63, 27202739, doi:10.1175/JAS3786.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 42724288, doi:10.1175/2008MWR2546.1.

    • Search Google Scholar
    • Export Citation
  • Grivet-Talocia, S., and F. Einaudi, 1998: Wavelet analysis of a microbarograph network. IEEE Trans. Geosci. Remote Sens., 36, 418433, doi:10.1109/36.662727.

    • Search Google Scholar
    • Export Citation
  • Grivet-Talocia, S., F. Einaudi, W. L. Clark, R. D. Dennett, G. D. Nastrom, and T. E. VanZandt, 1999: A 4-yr climatology of pressure disturbances using a barometer network in central Illinois. Mon. Wea. Rev., 127, 16131629, doi:10.1175/1520-0493(1999)127<1613:AYCOPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: Mesowest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211225, doi:10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jewett, B. F., M. K. Ramamurthy, and R. M. Rauber, 2003: Origin, evolution, and finescale structure of the St. Valentine’s Day mesoscale gravity wave observed during STORM-FEST. Part III: Gravity wave genesis and the role of evaporation. Mon. Wea. Rev., 131, 617633, doi:10.1175/1520-0493(2003)131<0617:OEAFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, doi:10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 2001: Surface mesohighs and mesolows. Bull. Amer. Meteor. Soc., 82, 1331, doi:10.1175/1520-0477(2001)082<0013:SMAM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. J. Osborn, and K. R. Briffa, 2003: Pressure-based measures of the North Atlantic Oscillation (NAO): A comparison and an assessment of changes in the strength of the NAO and in its influence on surface climate parameters. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell et al., Eds., Amer. Geophys. Union, 173–192.

  • Koch, S. E., and C. O’Handley, 1997: Operational forecasting and detection of mesoscale gravity waves. Wea. Forecasting, 12, 253281, doi:10.1175/1520-0434(1997)012<0253:OFADOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and L. M. Siedlarz, 1999: Mesoscale gravity waves and their environment in the central United States during STORM-FEST. Mon. Wea. Rev., 127, 28542879, doi:10.1175/1520-0493(1999)127<2854:MGWATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and S. Saleeby, 2001: An automated system for the analysis of gravity waves and other mesoscale phenomena. Wea. Forecasting, 16, 661679, doi:10.1175/1520-0434(2001)016<0661:AASFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koppel, L. L., L. F. Bosart, and D. Keyser, 2000: A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States. Mon. Wea. Rev., 128, 5168, doi:10.1175/1520-0493(2000)128<0051:AYCOLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krueger, O., and H. von Storch, 2012: The informational value of pressure-based single-station proxies for storm activity. J. Atmos. Oceanic Technol., 29, 569580, doi:10.1175/JTECH-D-11-00163.1.

    • Search Google Scholar
    • Export Citation
  • Lee, X., and A. G. Barr, 1998: Climatology of gravity waves in a forest. Quart. J. Roy. Meteor. Soc., 124, 14031419, doi:10.1002/qj.49712454904.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. B. Smith, 2010: The detection and significance of diurnal pressure and potential vorticity anomalies east of the Rockies. J. Atmos. Sci., 67, 27342751, doi:10.1175/2010JAS3423.1.

    • Search Google Scholar
    • Export Citation
  • Madaus, L. E., G. J. Hakim, and C. F. Mass, 2014: Utility of dense pressure observations for improving mesoscale analyses and forecasts. Mon. Wea. Rev., 142, 23982413, doi:10.1175/MWR-D-13-00269.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, Ltd., 399 pp.

  • Mass, C. F., and L. E. Madaus, 2014: Surface pressure observations from smartphones: A potential revolution for high-resolution weather prediction? Bull. Amer. Meteor. Soc., 95, 13431349, doi:10.1175/BAMS-D-13-00188.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., W. J. Steenburgh, and D. M. Schultz, 1991: Diurnal surface-pressure variations over the continental United States and the influence of sea level reduction. Mon. Wea. Rev., 119, 28142830, doi:10.1175/1520-0493(1991)119<2814:DSPVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Metz, N. D., and L. F. Bosart, 2010: Derecho and MCS development, evolution, and multiscale interactions during 3–5 July 2003. Mon. Wea. Rev., 138, 30483070, doi:10.1175/2010MWR3218.1.

    • Search Google Scholar
    • Export Citation
  • Nappo, C., 2002: An Introduction to Atmospheric Gravity Waves. International Geophysics Series, Vol. 85, Academic Press, 276 pp.

  • National Weather Service Weather Forecast Office cited, 2014: Squall line produces wind damage and large hail June 13th, 2013. Blacksburg, VA. [Available online at http://www.erh.noaa.gov/rnk/events/2013/June13th_SquallLine/summary.php.]

  • Nieto Ferreira, R., L. Hall, and T. M. Rickenbach, 2013: A climatology of the structure, evolution, and propagation of midlatitude cyclones in the southeast United States. J. Climate, 26, 84068421, doi:10.1175/JCLI-D-12-00657.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., and B. A. Colle, 2006: Observations of multiple sea breeze boundaries during an unseasonably warm day in metropolitan New York City. Bull. Amer. Meteor. Soc., 87, 169174, doi:10.1175/BAMS-87-2-169.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Pavlis, G. L., K. Sigloch, S. Burdick, M. J. Fouch, and F. Vernon, 2012: Unraveling the geometry of the Farallon Plate: Synthesis of three-dimensional imaging results from the USArray. Tectonophysics, 532–535, 82102, doi:10.1016/j.tecto.2012.02.008.

    • Search Google Scholar
    • Export Citation
  • Ramamurthy, M. K., R. M. Rauber, B. P. Collins, and N. K. Malhotra, 1993: A comparative study of large-amplitude gravity-wave events. Mon. Wea. Rev., 121, 29512974, doi:10.1175/1520-0493(1993)121<2951:ACSOLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and S. Poulose, 2005: Terdiurnal surface-pressure oscillations over the continental United States. Mon. Wea. Rev., 133, 25262534, doi:10.1175/MWR2988.1.

    • Search Google Scholar
    • Export Citation
  • Reitan, C. H., 1974: Frequencies of cyclones and cyclogenesis for North America, 1951–1970. Mon. Wea. Rev., 102, 861868, doi:10.1175/1520-0493(1974)102<0861:FOCACF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and L. F. Bosart, 2014: A case study of the interaction of a mesoscale gravity wave with a mesoscale convective system. Mon. Wea. Rev., 142, 14031429, doi:10.1175/MWR-D-13-00274.1.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sutherland, B., 2010: Internal Gravity Waves. Cambridge University Press, 377 pp.

  • Thomas, B. C., and J. E. Martin, 2007: A synoptic climatology and composite analysis of the Alberta clipper. Wea. Forecasting, 22, 315333, doi:10.1175/WAF982.1.

    • Search Google Scholar
    • Export Citation
  • Tian, W., D. J. Parker, S. Mobbs, M. Hill, C. A. D. Kilburn, and D. Ladd, 2004: Observing coherent boundary layer motions using remote sensing and surface pressure measurement. J. Atmos. Oceanic Technol., 21, 14811490, doi:10.1175/1520-0426(2004)021<1481:OCBLMU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tyndall, D., and J. Horel, 2013: Impacts of mesonet observations on meteorological surface analyses. Wea. Forecasting, 28, 254269, doi:10.1175/WAF-D-12-00027.1.

    • Search Google Scholar
    • Export Citation
  • Tytell, J. E., J. Eakins, and F. Vernon, 2011: Tracking outflows from severe thunderstorms using NSF EarthScope USArray pressure sensors. 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 2A.3. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Manuscript/Paper180739/AMS_2011_JonTytell_Extended_abstract.pdf.]

  • Vernon, F. L., J. Eakins, J. Tytell, M. Hedlin, B. Busby, and B. Woodward, 2011: Observations of weather phenomena by NSF EarthScope USArray seismic and pressure sensors. 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., P110. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Manuscript/Paper180671/AMS_2011_FrankVernon_Extended_abstract.pdf.]

  • Vernon, F. L., J. E. Tytell, B. Busby, J. Eakins, M. Hedlin, A. Muschinski, K. Walker, and B. Woodward, 2012: Scientific viability of the USArray Transportable Array network as a real-time weather monitoring platform. 16th Symp. on Meteorological Observation and Instrumentation, New Orleans, LA, Amer. Meteor. Soc., 5.3. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Manuscript/Paper200044/AMS_2012_FrankV_Extended_abstract.pdf.]

  • Viana, S., E. Terradellas, and C. Yagüe, 2010: Analysis of gravity waves generated at the top of a drainage flow. J. Atmos. Sci., 67, 39493966, doi:10.1175/2010JAS3508.1.

    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, doi:10.1175/JAS-D-13-0171.1.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., and D. J. Stensrud, 2010: The impact of assimilating surface pressure observations on severe weather events in a WRF mesoscale ensemble system. Mon. Wea. Rev., 138, 16731694, doi:10.1175/2009MWR3042.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 11901200, doi:10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and M. H. Ritzwoller, 2008: Teleseismic surface wave tomography in the western U.S. using the transportable array component of USArray. Geophys. Res. Lett., 35, L04308, doi:10.1029/2007GL032278.

    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, doi:10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 338 115 11
PDF Downloads 174 68 6