Secondary Cyclogenesis along an Occluded Front Leading to Damaging Wind Gusts: Windstorm Kyrill, January 2007

Patrick Ludwig Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Patrick Ludwig in
Current site
Google Scholar
PubMed
Close
,
Joaquim G. Pinto Department of Meteorology, University of Reading, Reading, United Kingdom, and Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Joaquim G. Pinto in
Current site
Google Scholar
PubMed
Close
,
Simona A. Hoepp Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Simona A. Hoepp in
Current site
Google Scholar
PubMed
Close
,
Andreas H. Fink Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Andreas H. Fink in
Current site
Google Scholar
PubMed
Close
, and
Suzanne L. Gray Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Suzanne L. Gray in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Windstorm Kyrill affected large parts of Europe in January 2007 and caused widespread havoc and loss of life. In this study the formation of a secondary cyclone, Kyrill II, along the occluded front of the mature cyclone Kyrill and the occurrence of severe wind gusts as Kyrill II passed over Germany are investigated with the help of high-resolution regional climate model simulations. Kyrill underwent an explosive cyclogenesis south of Greenland as the storm crossed poleward of an intense upper-level jet stream. Later in its life cycle secondary cyclogenesis occurred just west of the British Isles. The formation of Kyrill II along the occluded front was associated (i) with frontolytic strain and (ii) with strong diabatic heating in combination with a developing upper-level shortwave trough. Sensitivity studies with reduced latent heat release feature a similar development but a weaker secondary cyclone, revealing the importance of diabatic processes during the formation of Kyrill II. Kyrill II moved farther toward Europe and its development was favored by a split jet structure aloft, which maintained the cyclone’s exceptionally deep core pressure (below 965 hPa) for at least 36 h. The occurrence of hurricane-force winds related to the strong cold front over north and central Germany is analyzed using convection-permitting simulations. The lower troposphere exhibits conditional instability, a turbulent flow, and evaporative cooling. Simulation at high spatiotemporal resolution suggests that the downward mixing of high momentum (the wind speed at 875 hPa widely exceeded 45 m s−1) accounts for widespread severe surface wind gusts, which is in agreement with observed widespread losses.

Corresponding author address: Patrick Ludwig, Institute for Geophysics and Meteorology, University of Cologne, Pohligstr. 3, 50969 Cologne, Germany. E-mail: pludwig@meteo.uni-koeln.de

Abstract

Windstorm Kyrill affected large parts of Europe in January 2007 and caused widespread havoc and loss of life. In this study the formation of a secondary cyclone, Kyrill II, along the occluded front of the mature cyclone Kyrill and the occurrence of severe wind gusts as Kyrill II passed over Germany are investigated with the help of high-resolution regional climate model simulations. Kyrill underwent an explosive cyclogenesis south of Greenland as the storm crossed poleward of an intense upper-level jet stream. Later in its life cycle secondary cyclogenesis occurred just west of the British Isles. The formation of Kyrill II along the occluded front was associated (i) with frontolytic strain and (ii) with strong diabatic heating in combination with a developing upper-level shortwave trough. Sensitivity studies with reduced latent heat release feature a similar development but a weaker secondary cyclone, revealing the importance of diabatic processes during the formation of Kyrill II. Kyrill II moved farther toward Europe and its development was favored by a split jet structure aloft, which maintained the cyclone’s exceptionally deep core pressure (below 965 hPa) for at least 36 h. The occurrence of hurricane-force winds related to the strong cold front over north and central Germany is analyzed using convection-permitting simulations. The lower troposphere exhibits conditional instability, a turbulent flow, and evaporative cooling. Simulation at high spatiotemporal resolution suggests that the downward mixing of high momentum (the wind speed at 875 hPa widely exceeded 45 m s−1) accounts for widespread severe surface wind gusts, which is in agreement with observed widespread losses.

Corresponding author address: Patrick Ludwig, Institute for Geophysics and Meteorology, University of Cologne, Pohligstr. 3, 50969 Cologne, Germany. E-mail: pludwig@meteo.uni-koeln.de
Save
  • Ayrault, F., F. Lalaurette, A. Joly, and C. Loo, 1995: North Atlantic ultra high frequency variability: An introductory survey. Tellus, 47A, 671696, doi:10.1034/j.1600-0870.1995.00112.x.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO Model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., 1996: Domain-independent attribution. Part I: Reconstructing the wind from estimates of vorticity and divergence using free space Green’s functions. J. Atmos. Sci., 53, 241252, doi:10.1175/1520-0469(1996)053<0241:DIAPIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and A. J. Thorpe, 1994a: Frontal wave stability during moist deformation frontogenesis. Part I: Linear wave dynamics. J. Atmos. Sci., 51, 852873, doi:10.1175/1520-0469(1994)051<0852:FWSDMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and A. J. Thorpe, 1994b: Frontal wave stability during moist deformation frontogenesis. Part II: The suppression of nonlinear wave development. J. Atmos. Sci., 51, 874888, doi:10.1175/1520-0469(1994)051<0874:FWSDMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Born, K., P. Ludwig, and J. G. Pinto, 2012: Wind gust estimation for mid-European winter storms: Towards a probabilistic view. Tellus, 64A, 17471, doi:10.3402/tellusa.v64i0.17471.

    • Search Google Scholar
    • Export Citation
  • Brasseur, O., 2001: Development and application of a physical approach to estimating wind gusts. Mon. Wea. Rev., 129, 525, doi:10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4, 317324, doi:10.1017/S1350482797000613.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Reynolds, 1994: Diagnostic study of a narrow cold-frontal rainband and severe winds associated with a stratospheric intrusion. Quart. J. Roy. Meteor. Soc., 120, 235257, doi:10.1002/qj.49712051602.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and B. W. Golding, 1995: Mesoscale aspects of a dry intrusion within a vigorous cyclone. Quart. J. Roy. Meteor. Soc., 121, 463493, doi:10.1002/qj.49712152302.

    • Search Google Scholar
    • Export Citation
  • Čampa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci., 69, 725740, doi:10.1175/JAS-D-11-050.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1991: Mid-latitude Weather Systems. Harper Collins, 507 pp.

  • Carrera, M. L., J. R. Gyakum, and D.-L. Zhang, 1999: A numerical case study of secondary marine cyclogenesis sensitivity to initial error and varying physical processes. Mon. Wea. Rev., 127, 641660, doi:10.1175/1520-0493(1999)127<0641:ANCSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and A. J. Thorpe, 1999: Frontogenesis and the development of secondary wave cyclones in FASTEX. Quart. J. Roy. Meteor. Soc., 125, 925940, doi:10.1002/qj.49712555509.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2006: Life-cycle simulations of shallow frontal waves and the impact of deformation strain. Quart. J. Roy. Meteor. Soc., 132, 21712190, doi:10.1256/qj.05.238.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2013: Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors. Geophys. Res. Lett., 40, 23222327, doi:10.1002/grl.50105.

    • Search Google Scholar
    • Export Citation
  • Danard, M. B., 1964: On the influence of released latent heat on cyclone development. J. Appl. Meteor., 3, 2737, doi:10.1175/1520-0450(1964)003<0027:OTIORL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • De Rooy, W. C., and K. Kok, 2004: A combined physical statistical approach for the downscaling of model wind speed. Wea. Forecasting, 19, 485495, doi:10.1175/1520-0434(2004)019<0485:ACPAFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072, doi:10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional model LM. Part II: Physical parameterization. Tech. Rep., Consortium for Small-Scale Modelling, 161 pp. [Available online at http://www.cosmo-model.org.]

  • Donat, M. G., T. Pardowitz, G. C. Leckebusch, U. Ulbrich, and O. Burghoff, 2011: High-resolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over Germany. Nat. Hazards Earth Syst. Sci., 11, 28212833, doi:10.5194/nhess-11-2821-2011.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. Amerault, C. A. Reynolds, and P. A. Reinecke, 2014: Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon. Wea. Rev., 142, 320342, doi:10.1175/MWR-D-13-00201.1.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., P. H. Haynes, M. N. Juckes, and T. G. Shepherd, 1991: The stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech., 230, 647665, doi:10.1017/S0022112091000915.

    • Search Google Scholar
    • Export Citation
  • Durst, C. D., 1960: Wind speeds over short periods of time. Meteor. Mag., 89, 181186.

  • Fink, A. H., T. Brücher, V. Ermert, A. Krüger, and J. G. Pinto, 2009: The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci., 9, 405423, doi:10.5194/nhess-9-405-2009.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., S. Pohle, J. G. Pinto, and P. Knippertz, 2012: Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys. Res. Lett., 39, L07803, doi:10.1029/2012GL051025.

    • Search Google Scholar
    • Export Citation
  • Friederichs, P., M. Goeber, S. Bentzien, A. Lenz, and R. Krampitz, 2009: A probabilistic analysis of wind gusts using extreme value statistics. Meteor. Z., 18, 615629, doi:10.1127/0941-2948/2009/0413.

    • Search Google Scholar
    • Export Citation
  • Gall, R., 1976: The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci., 33, 16861701, doi:10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gatzen, C., P. Púčik, and D. Ryva, 2011: Two cold-season derechoes in Europe. Atmos. Res., 100, 740748, doi:10.1016/j.atmosres.2010.11.015.

    • Search Google Scholar
    • Export Citation
  • Goyette, S., O. Brasseur, and M. Beniston, 2003: Application of a new wind gust parameterisation: Multiple scale studies performed with the Canadian regional climate model. J. Geophys. Res., 108, 4374, doi:10.1029/2002JD002646.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., and H. F. Dacre, 2006: Classifying dynamical forcing mechanisms using a climatology of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 132, 11191137, doi:10.1256/qj.05.69.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, doi:10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407418, doi:10.1002/qj.934.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen's frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762781, doi:10.1175/1520-0493(1988)116<0762:AGOPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ludwig, P., J. G. Pinto, M. Reyers, and S. L. Gray, 2014: The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia. Quart. J. Roy. Meteor. Soc., 140, 17291741, doi:10.1002/qj.2253.

    • Search Google Scholar
    • Export Citation
  • Mailier, P. J., D. B. Stephenson, C. A. T. Ferro, and K. I. Hodges, 2006: Serial clustering of extratropical cyclones. Mon. Wea. Rev., 134, 22242240, doi:10.1175/MWR3160.1.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics—A First Course. Wiley, 324 pp.

  • Mellor, G., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., and G. E. Vanknowe, 1992: The effect of jet-streak curvature on kinematic fields. Mon. Wea. Rev., 120, 24292441, doi:10.1175/1520-0493(1992)120<2429:TEOJSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. A. Shapiro, and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 21772199, doi:10.1175/1520-0493(1993)121<2177:TLCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmen, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 603 pp.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley & Sons, 397 pp.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 1998a: Secondary frontal waves in the North Atlantic region: A dynamical perspective of current ideas. Quart. J. Roy. Meteor. Soc., 124, 829856, doi:10.1002/qj.49712454709.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 1998b: Barotropic instability in frontolytic strain. Quart. J. Roy. Meteor. Soc., 124, 16171632, doi:10.1002/qj.49712454913.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11, 127. [Available online at ftp://ftp.uib.no/pub/gfi/ngftf/Geofysiske%20Publikasjoner/11/NGF_GP_Vol11_no6.pdf.]

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., N. Bellenbaum, M. K. Karremann, and P. M. Della-Marta, 2013: Serial clustering of extratropical cyclones over the North Atlantic and Europe under recent and future climate conditions. J. Geophys. Res. Atmos., 118, 12 47612 485, doi:10.1002/2013JD020564.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., A. J. Thorpe, and C. H. Bishop, 1997: The role of the environmental flow in the development of secondary frontal cyclones. Quart. J. Roy. Meteor. Soc., 123, 16531675, doi:10.1002/qj.49712354210.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J. F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rivals, H., J.-P. Cammas, and I. A. Renfrew, 1998: Secondary cyclogenesis: The initiation phase of a frontal wave observed over the eastern Atlantic. Quart. J. Roy. Meteor. Soc., 124, 243267, doi:10.1002/qj.49712454511.

    • Search Google Scholar
    • Export Citation
  • Rockel, B., A. Will, and A. Hense, Eds., 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17, 347348, doi:10.1127/0941-2948/2008/0309.

    • Search Google Scholar
    • Export Citation
  • Romero, R., M. Gayà, and C. A. Doswell III, 2007: European climatology of severe convective storm environmental parameters: A test for significant tornado events. Atmos. Res., 83, 389404, doi:10.1016/j.atmosres.2005.06.011.

    • Search Google Scholar
    • Export Citation
  • Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2004: A 10-yr climatology relating the locations of reported tornadoes to the quadrants of upper-level jet streaks. Wea. Forecasting, 19, 301309, doi:10.1175/1520-0434(2004)019<0301:AYCRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossa, A. M., H. Wernli, and H. C. Davies, 2000: Growth and decay of an extra-tropical cyclone’s PV-tower. Meteor. Atmos. Phys., 73, 139156, doi:10.1007/s007030050070.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schrage, J. M., and A. H. Fink, 2012: Nocturnal continental low-level stratus over tropical West Africa: Observations and possible mechanisms controlling its onset. Mon. Wea. Rev., 140, 17941809, doi:10.1175/MWR-D-11-00172.1.

    • Search Google Scholar
    • Export Citation
  • Schulz, J.-P., 2008: Revision of the turbulent gust diagnostics in the COSMO model. COSMO Newsl., 8, 1722. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter08/cnl8_schulz.pdf.]

    • Search Google Scholar
    • Export Citation
  • Schulz, J.-P., and E. Heise, 2003: A new scheme for diagnosing near-surface convective gusts. COSMO Newsl., 3, 221225. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter03/cnl3-chp9-15.pdf.]

    • Search Google Scholar
    • Export Citation
  • Swiss Re, cited2008: Natural catastrophes and man-made disasters in 2007: High losses in Europe. Sigma Rep. 1/2008. [Available online at www.swissre.com/sigma/.]

  • Thorncroft, C. D., and B. J. Hoskins, 1990: Frontal cyclogenesis. J. Atmos. Sci., 47, 23172336, doi:10.1175/1520-0469(1990)047<2317:FC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703, doi:10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wanner, H., S. Bronnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North Atlantic oscillation: Concepts and studies. Surv. Geophys., 22, 321382, doi:10.1023/A:1014217317898.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429, doi:10.1256/003590002321042036.

    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1973: Gust factors over open water and built up country. Bound.-Layer Meteor., 3, 424441, doi:10.1007/BF01034986.

  • Young, M. V., G. A. Monk, and K. A. Browning, 1987: Interpretation of satellite imagery of a rapidly deepening cyclone. Quart. J. Roy. Meteor. Soc., 113, 10891115, doi:10.1002/qj.49711347803.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1142 407 14
PDF Downloads 649 130 14